Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eunju Cha is active.

Publication


Featured researches published by Eunju Cha.


Drug Testing and Analysis | 2014

Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography‐silver ion coordination ionspray/triple‐quadrupole mass spectrometry

So-Hee Kim; Eunju Cha; Kang Mi Lee; Ho Jun Kim; Oh-Seung Kwon; Jaeick Lee

Metal ion coordination ionspray (M(+) CIS) ionization is a powerful technique to enhance ionization efficiency and sensitivity. In this study, we developed and validated an analytical method for simultaneous ionization and analysis of 84 anabolic androgenic steroids (65 exogenous and 19 endogenous) using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry (LC-Ag(+) CIS/MS/MS). The concentrations of silver ions and organic solvents have been optimized to increase the amount of silver ion coordinated complexes. A combination of 25 μM of silver ions and methanol showed the best sensitivity. The validation results showed the intra- (0.8-9.2%) and inter-day (2.5-14.9%) precisions, limits of detection (0.0005-5.0 ng/mL), and matrix effect (71.8-100.3%) for the screening analysis. No significant ion suppression was observed. In addition, this method was successfully applied to analysis of positive samples from suspected abusers and useful for the detection of the trace levels of anabolic steroids in human urine samples.


Oncotarget | 2017

25-Hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis

Sung-Min Kim; Min-Young Noh; Heejaung Kim; Soyoung Cheon; Kang Mi Lee; Jaeick Lee; Eunju Cha; Kyung Seok Park; Kwang-Woo Lee; Jung-Joon Sung; Seung Hyun Kim

This study aimed to evaluate the levels of three major hydroxycholesterols (24-, 25-, and 27-hydroxycholesterols) in the serum and cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS), as well as to show their role in the pathogenesis of ALS experimental models. The level of 25-hydroxycholesterol were higher in untreated ALS patients (n = 30) than in controls without ALS (n = 33) and ALS patients treated with riluzole (n = 9) both in their serum and CSF. The level of 25-hydroxycholesterol in the serum of ALS patients were significantly associated with their disease severity and rate of progression. In the motor neuron-like cell line (NSC34) with the human mutant G93A superoxide dismutase 1 gene (mSOD1-G93A), 25-hydroxycholesterol induced motor neuronal death/ apoptosis via glycogen synthase kinase-3β and liver X receptor pathways; riluzole treatment attenuated these effects. The expressions of enzymes that synthesize 25-hydroxycholesterol were significantly increased in the brains of early symptomatic mSOD1G93A mice. Our data, obtained from patients with ALS, a cellular model of ALS, and an animal model of ALS, suggests that 25-hydroxycholesterol could be actively involved in the pathogenesis of ALS, mostly in the early symptomatic disease stage, by mediating neuronal apoptosis.


Drug Testing and Analysis | 2015

Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

Eunju Cha; So-Hee Kim; Ho Jun Kim; Kang Mi Lee; Ki Hun Kim; Oh-Seung Kwon; Jaeick Lee

This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids.


Analytical Chemistry | 2017

Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography

Eun Sook Jeong; Eunju Cha; Sangwon Cha; Sunghwan Kim; Han Bin Oh; Oh-Seung Kwon; Jaeick Lee

In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min-1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.


Biomedical Chromatography | 2016

Relationships between structure, ionization profile and sensitivity of exogenous anabolic steroids under electrospray ionization and analysis in human urine using liquid chromatography–tandem mass spectrometry

Eunju Cha; So-Hee Kim; Hee Won Kim; Kang Mi Lee; Ho Jun Kim; Oh-Seung Kwon; Jaeick Lee

The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine.


PLOS ONE | 2016

Hydroxycholesterol Levels in the Serum and Cerebrospinal Fluid of Patients with Neuromyelitis Optica Revealed by LC-Ag+CIS/MS/MS and LC-ESI/MS/MS with Picolinic Derivatization: Increased Levels and Association with Disability during Acute Attack

Eunju Cha; Kang Mi Lee; Ki Duk Park; Kyung Seok Park; Kwang-Woo Lee; Sung-Min Kim; Jaeick Lee; Orhan Aktas

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). Hydroxycholesterols (OHCs), metabolites of CNS cholesterol, are involved in diverse cellular responses to inflammation and demyelination, and may also be involved in the pathogenesis of NMO. We aimed to develop a sensitive and reliable method for the quantitative analysis of three major OHCs (24S-, 25-, and 27-OHCs), and to evaluate their concentration in the cerebrospinal fluid (CSF) and serum of patients with NMO. The levels of the three OHCs in the serum and CSF were measured using liquid chromatography-silver ion coordination ionspray tandem mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry with picolinyl ester derivatization, respectively. The linear range was 5–250 ng/mL for 24S- and 27-OHC, and 0.5–25 ng/mL for 25-OHC in serum, and was 0.1–5 ng/mL for 24S- and 27-OHC, and 0.03–1 ng/mL for 25-OHC in CSF. Precision and accuracy were 0.5%–14.7% and 92.5%–109.7%, respectively, in serum, and were 0.8%–7.7% and 94.5%–119.2%, respectively, in CSF. Extraction recovery was 82.7%–90.7% in serum and 68.4%–105.0% in CSF. When analyzed in 26 NMO patients and 23 control patients, the 25-OHC (0.54 ± 0.96 ng/mL vs. 0.09 ± 0.04 ng/mL, p = 0.032) and 27-OHC (2.68 ± 3.18 ng/mL vs. 0.68 ± 0.25 ng/mL, p = 0.005) were increased in the CSF from NMO patients. When we measured the OHCCSF index that controls the effects of blood–brain barrier disruption on the level of OHC in the CSF, the 27-OHCCSF index was associated with disability (0.723; 95% confidence interval (CI)– 0.181, 0.620; p = 0.002), while the 24-OHCCSF index (0.518; 95% CI– 1.070, 38.121; p = 0.040) and 25-OHCCSF index (0.677; 95% CI– 4.313, 18.532; p = 0.004) were associated with the number of white blood cells in the CSF of NMO patients. Our results imply that OHCs in the CNS could play a role in the pathogenesis of NMO.


Mass Spectrometry Letters | 2013

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

So-Hee Kim; Hye Hyun Yoo; Eunju Cha; Eun Sook Jeong; Ho Jun Kim; Dong-Hyun Kim; Jaeick Lee

An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacok- inetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppres- sion was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.


Analytical Chemistry | 2018

Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography

Eunju Cha; Eun Sook Jeong; Sang Beom Han; Sangwon Cha; Junghyun Son; Sunghwan Kim; Han Bin Oh; Jaeick Lee

Herein, gas-phase polycyclic aromatic hydrocarbons (PAHs) as nonpolar compounds were ionized to protonated molecular ions [M + H]+ without radical cations and simultaneously analyzed using gas chromatography (GC)/electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). The ionization profile, dissociation, and sensitivity were first investigated to understand the significant behavior of gas-phase PAHs under ESI. The formation of protonated molecular ions of PAHs was distinguished according to the analyte phase and ESI spray solvents. The protonated PAHs exhibited characteristic dissociations, such as H-loss, H2-loss, and acetylene-loss, via competition of internal energy. In addition, GC/ESI-MS/MS resulted in relatively lower concentration levels (better sensitivity) for the limits-of-detection (LODs) of PAHs than liquid chromatography (LC)/ESI-MS/MS, and it seems to result from the characteristic ionization mechanism of the gas-phase analyte under ESI. Furthermore, the LODs of gas-phase PAHs depended on molecular weight and proton affinity (PA). Consequently, we demonstrated the relationship among the analyte phases, sensitivities, and structural characteristics (molecular weight and PA) under ESI. The gas-phase PAHs provided enhanced protonation efficiency and sensitivity using GC/ESI-MS/MS, as their molecular weight and PA increased. Based on these results, we offered important information regarding the behavior of gas-phase analytes under ESI. Therefore, the present GC/ESI-MS/MS method has potential as an alternative method for simultaneous analysis of PAHs.


Journal of Chromatography B | 2016

Relationship between chromatographic resolution and amide structure of chiral 2-hydroxy acids as O-(−)-menthoxycarbonylated diastereomeric derivatives for enantiomeric separation on achiral gas chromatography

Eunju Cha; So-Hee Kim; Kang Mi Lee; Ho Jun Kim; Ki Hun Kim; Oh-Seung Kwon; Ki Duk Park; Jaeick Lee

The relationship between chromatographic resolution and amide structure of chiral 2-hydroxy acids as O-(-)-menthoxycarbonylated diastereomeric derivatives on achiral gas chromatography was investigated to elucidate the best diastereomeric conformation for enantiomeric separation of chiral 2-hydroxy acids. Thirteen chiral 2-hydroxy acids were converted into nine different diastereomeric O-(-)-menthoxycarbonylated amide derivatives using the primary, secondary and cyclic amines to achieve complete enantiomeric separation through an achiral column. Each enantiomeric pair of 2-hydroxy acids as O-(-)-menthoxycarbonylated tert-butylamide derivatives was resolved on both the DB-5 and DB-17 columns with resolution factors ranging from 1.7 to 4.8 and 1.7 to 3.4, respectively. The results revealed that the structure of the amide moiety is shown to significantly affect chromatographic resolution. In addition, O-(-)-menthoxycarbonylated tert-butylamide derivatives were shown to be the best diastereomeric conformations for enantiomeric separation of 2-hydroxy acids. When comparing with our previous O-trifluoroacetylated(-)-menthyl ester derivatization method, the present results suggested that size differences between groups attached to the chiral center and conformational rigidity can have stronger effects on resolution than the distance between chiral centers. The elution of R- and S-stereoisomers was affected by the class of amine; i.e., primary, secondary, or cyclic, regardless of the substituents on the amine group, the structure of the 2-hydroxy acid, and the polarity of the column.


Mass Spectrometry Letters | 2018

Direct Quantitation of Amino Acids in Human Serum Using a Stepwise- Dilution Strategy and a Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry Method

Jaeick Lee; Seunghwa Lee ; Byung-Joo Kim; Joonhee Lee; Eunju Cha

Collaboration


Dive into the Eunju Cha's collaboration.

Top Co-Authors

Avatar

Jaeick Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ho Jun Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

So-Hee Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kang Mi Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Oh-Seung Kwon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eun Sook Jeong

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee Won Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Junghyun Son

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ki Duk Park

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge