Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Bin Oh is active.

Publication


Featured researches published by Han Bin Oh.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue

Siu Kwan Sze; Ying Ge; Han Bin Oh; Fred W. McLafferty

A mass difference between the measured molecular weight of a protein and that of its DNA-predicted sequence indicates sequence errors and/or posttranslational modifications. In the top-down mass spectrometry approach, the measured molecular ion is dissociated, and these fragment masses are matched against those predicted from the protein sequence to restrict the locations of the errors/modifications. The proportion of the ions interresidue bonds that are cleaved determines the specificity of such locations; previously, ubiquitin (76 residues) was the largest for which all such bonds were dissociated. Now, cleavages are achieved for carbonic anhydrase at 250 of the 258 interresidue locations. Cleavages of three spectra would define posttranslational modifications at 235 residues to within one residue. For 24 of the 34 possible phosphorylation sites, the cleavages of one spectrum would delineate exactly all −PO3H substitutions. This result has been achieved with electron-capture dissociation by minimizing the further cleavage of primary product ions and by denaturing the tertiary noncovalent bonding of the molecular ions under a variety of conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy

Han Bin Oh; Kathrin Breuker; Siu Kwan Sze; Ying Ge; Barry K. Carpenter; Fred W. McLafferty

Over the last decade a variety of MS measurements, such as H/D exchange, collision cross sections, and electron capture dissociation (ECD), have been used to characterize protein folding in the gas phase, in the absence of solvent. To the extensive data already available on ubiquitin, here photofragmentation of its ECD-reduced (M + nH)(n−1)+• ions shows that only the 6+ to 9+, not the 10+ to 13+ ions, have tertiary noncovalent bonding; this is indicated as hydrogen bonding by the 3,050–3,775 cm−1 photofragment spectrum. ECD spectra and H/D exchange of the 13+ ions are consistent with an all α-helical secondary structure, with the 11+ and 10+ ions sufficiently destabilized to denature small bend regions near the helix termini. In the 8+ and 9+ ions these terminal helical regions are folded over to be antiparallel and noncovalently bonded to part of the central helix, whereas this overlap is extended in the 7+, 6+, and, presumably, 5+ ions to form a highly stable three-helix bundle. Thermal denaturing of the 7+ to 9+ conformers both peels and slides back the outer helices from the central one, but for the 6+ conformer, this instead extends the protein ends away to shrink the three-helix bundle. Thus removal of H2O from a native protein negates hydrophobic interactions, preferentially stabilizes the α-helical secondary structure with direct solvation of additional protons, and increases tertiary interhelix dipole-dipole and hydrogen bonding.


Journal of the American Society for Mass Spectrometry | 2003

Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrometry

Ying Ge; Mariam ElNaggar; Siu Kwan Sze; Han Bin Oh; Tadhg P. Begley; Fred W. McLafferty; Helena I. Boshoff; Clifton E. Barry

Secreted proteins of Mycobacterium tuberculosis are implicated in its disease pathogenesis and so are considered as potential diagnostic and vaccine candidates. The search for these has been slow, even though the entire genome sequence of M. tuberculosis is now available; of the 620 protein spots resolved by 2-D gel electrophoresis, 114 secreted proteins have been identified, but for only 13 has the primary structure been partly characterized. For comparison, in this top down mass spectrometry (MS) approach the secreted proteins were precipitated from cell culture filtrate, resuspended, and examined directly by electrospray ionization (ESI) Fourier transform MS. The ESI spectra of three precipitates showed 93, 535, and 369 molecular weight (Mr) values, for a total of 689 different values. However, only ∼10% of these values matched (±1 Da) the DNA predicted Mr values, but these identifications were unreliable. Of nine molecular ions characterized by MS/MS, only one protein match was confirmed, and its isotopic molecular ions were overlapped by those of another protein. MS/MS identified a total of ten proteins by sequence tag search, of which three were unidentified previously. The low success of Mr matching was due to unusually extensive posttranslational modifications, including loss of a signal sequence, loss of the N-terminal residue, proteolytic degradation, oxidation, and glycosylation. Although in eubacteria the latter is relatively rare, a 9 kDa protein showed 7 hexose attachments and two 20 kDa proteins each had 20 attachments. For MS/MS, electron capture dissociation was especially effective.


European Journal of Mass Spectrometry | 2002

Hydrogen atom loss in electron-capture dissociation: a Fourier transform-ion cyclotron resonance study with single isotopomeric ubiquitin ions

Kathrin Breuker; Han Bin Oh; Blas A. Cerda; David M. Horn; Fred W. McLafferty

In electron-capture dissociation (ECD), a multiply-protonated protein ion, trapped in a Fourier transform-ion cyclotron resonance (FT-ICR) cell, captures a low-energy electron at a protonated site. In a major reaction pathway, the resulting hydrogen atom attacks a backbone carbonyl oxygen to form a hypervalent species that immediately dissociates into a complementary c, z• ion pair. For larger proteins, the reduced odd-electron ion (M + nH)(n −1)+• is a major product, as shown here using isotopically isolated precursors. In addition, a hydrogen atom can be lost without further reaction, yielding the [M + (n −1)H](n −1)+ even-electron ions. The large effect of charge state on the yield of these ions suggests that the 9+ to 11+ charge states have novel charge-solvated secondary structures.


Journal of the American Society for Mass Spectrometry | 2006

Observation of pronounced b•,y cleavages in the electron capture dissociation mass spectrometry of polyamidoamine (PAMAM) dendrimer ions with amide functionalities

Sunyoung Lee; Sang Yun Han; Tae Geol Lee; Gyusung Chung; Duckhwan Lee; Han Bin Oh

We report the electron capture dissociation (ECD) mass spectrometry of the third generation polyamidoamine (PAMAM) dendrimer that contains amide functionalities. The dendrimer was chosen because it offers a unique opportunity to understand the ECD behavior of the amide functionality in a framework other than peptides/proteins. In this study, PAMAM ECD was found to exhibit a fragmentation pattern strikingly different from that of ordinary peptide/protein ECD. Specifically, ECD of multiply protonated PAMAM ions gave rise to significant b•,y cleavages as well as S,E dissociations but, unexpectedly, only minor c,z• fragmentations are observed. In an effort to account for the unexpectedly different fragmentation pattern, a comparative ECD experiment on the poly(propylene imine) dendrimer in which the amide bond moiety is not available and density functional theory calculations (B3LYP/6-311+G(d)) investigations on the model system of a charge-solvated single-repeat unit were carried out. On the basis of these results, we discuss here possible implications of intramolecular charge-solvation, energy barriers in dissociation reactions, and macromolecular properties of the dendritic molecule for understanding the reaction pathway of PAMAM ECD.


Journal of Mass Spectrometry | 2011

Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry

Minhee Lee; Younjin Lee; Hye-Yeon Park; Yeonmi Seong; Bong June Sung; Bongjin Moon; Han Bin Oh

The gas-phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o-TEMPO-Bz-conjugated peptides with an intra- and intermolecular disulfide bond was investigated using MS(n) tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLCRIVVIRVCR), TGF-α (CHSGYVGVRC), MCH (DFDMLRCMLGRVFRPCWQY) and Adrenomedullin (16-31) (CRFGTCTVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o-TEMPO-Bz-conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S-S or C-S bond was readily cleaved. The observed peptide backbone fragments included a-, c-, x- or z-types, which indicates that the radical-driven peptide fragmentation mechanism plays an important role in TEMPO-FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S-S or C-S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of •SH or •SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S-S bond, the abstraction of a hydrogen atom at C(β) by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H-abstraction at C(α) is suggested to lead to C-S bond cleavage, which yields [ion ± S] fragments or the loss of •SH or •SSH.


Mass Spectrometry Reviews | 2015

Radical-driven peptide backbone dissociation tandem mass spectrometry.

Han Bin Oh; Bongjin Moon

In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.


Journal of Chemical Physics | 1999

PHOTOELECTRON SPECTROSCOPY OF PYRIDINE CLUSTER ANIONS, (PY)N-(N=4-13)

Sang Yun Han; Jae Kyu Song; Jeong Hyun Kim; Han Bin Oh; Seong Keun Kim

Photoelectron spectroscopy was carried out for mass-selected anion clusters of pyridine (C5H5N=Py) up to (Py)13−. The smallest anion cluster observed was (Py)4−, which exhibited two distinctly different photoelectron bands arising from dipole-bound and valence electron states. A mixed cluster of [(Py)3(H2O)1]− displayed similar features. No dipole-bound state was observed in the larger clusters of neat pyridine, (Py)5–13−, which were interpreted as solvated clusters of pyridine molecular anion, Py−(Py)4–12. Threshold electron binding energies were measured as the upper limit value of adiabatic electron affinities. They increased monotonically from 0.33 eV for the cluster size of n=4 to 1.02 eV for n=13. But their incremental change showed a large drop at n=8, as did the incremental change in vertical detachment energy, which was viewed as due to the completion of the first solvation shell at n=7. The energetics of anion solvation suggested nearly pure electrostatic interactions at play. A boundary was dra...


Journal of the American Society for Mass Spectrometry | 2011

Multivariate Analysis of Electron Detachment Dissociation and Infrared Multiphoton Dissociation Mass Spectra of Heparan Sulfate Tetrasaccharides Differing Only in Hexuronic acid Stereochemistry

Han Bin Oh; Franklin E. Leach; Sailaja Arungundram; Kanar Al-Mafraji; Andre Venot; Geert-Jan Boons; I. Jonathan Amster

The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.


Rapid Communications in Mass Spectrometry | 2009

Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations

Soo-Jin Park; Wha-Keun Ahn; Sunyoung Lee; Sang Yun Han; Bum Ku Rhee; Han Bin Oh

Ultraviolet (UV) photodissociation (PD) experiments using 266 nm light were performed for a series of phosphopeptide cations in a Fourier transform mass spectrometer. The objective of the experiments was to determine whether 266 nm UV irradiation on the phosphopeptide cations would induce unique peptide backbone dissociation. In addition, the general behavior of the phosphate loss (-80 or -98 Da) was monitored, particularly for those phosphopeptides with a phosphotyrosine residue that itself is a UV chromophore. For phosphopeptides with a UV chromophore, their photodissociation behavior was very similar to that of low-energy sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD), with a few exceptions. For example, b- and y-type peptide backbone fragments were prevalent, and their dephosphorylation behavior was consistent with that of the SORI-CAD results. For phosphoserine peptides, the loss of a phosphate group was always observed. On the other hand, for phosphotyrosine peptides, the phosphate loss was found to be dependent on the presence of a basic amino group in the sequence and the charge state of the precursor ions, in agreement with the CAD results in the literature. However, hydrogen atom loss or aromatic side chain loss, which is known to be the excited state specific fragmentation pathway, was rarely observed in our 266 nm UV PD experiments, in contrast to the previous UV PD literature (particularly at 220 nm). The mechanism for these observations is described in terms of dominant internal conversion followed by intramolecular vibrational energy redistribution (IVR).

Collaboration


Dive into the Han Bin Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Yun Han

Korea Research Institute of Standards and Science

View shared research outputs
Top Co-Authors

Avatar

Sunyoung Lee

Korea Research Institute of Standards and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge