Eunsil Jung
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eunsil Jung.
Bulletin of the American Meteorological Society | 2013
Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; Lars Ahlm; Yi-Chun Chen; Matthew M. Coggon; J. S. Craven; Amanda A. Frossard; Haflidi H. Jonsson; Eunsil Jung; Jack J. Lin; A. R. Metcalf; R. L. Modini; Johannes Mülmenstädt; G. C. Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz
Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributi...
Bulletin of the American Meteorological Society | 2016
Paquita Zuidema; Ping Chang; Brian Medeiros; Benjamin Kirtman; Roberto Mechoso; Edwin K. Schneider; Thomas Toniazzo; Ingo Richter; R. Justin Small; Katinka Bellomo; Peter Brandt; Simon P. de Szoeke; J. Thomas Farrar; Eunsil Jung; Seiji Kato; Mingkui Li; Christina M. Patricola; Zaiyu Wang; Robert Wood; Zhao Xu
Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
Environmental Research Letters | 2016
Eunsil Jung; Ben P. Kirtman
Severe convective storms cause catastrophic losses each year in the United States, suggesting that any predictive capability is of great societal benefit. While it is known that El Nino and the Southern Oscillation (ENSO) influence high impact weather events, such as a tornado activity and severe storms, in the US during early spring, this study highlights that the influence of ENSO on US severe storm characteristics is weak during May–July. Instead, warm water in the Gulf of Mexico is a potential predictor for moist instability, which is an important factor in influencing the storm characteristics in the US during May–July.
Journal of Applied Meteorology and Climatology | 2014
Eunsil Jung; Bruce A. Albrecht
AbstractCirculations in and around cumulus clouds are inferred by using a passive tracer (radar chaff) and an airborne cloud radar during the Barbados Aerosol Cloud Experiment (BACEX). The radar chaff elements used for this experiment are fibers that are cut to a length of about ½ of the radar wavelength to maximize radar returns by serving as dipole antennas. The fibers are packed in fiber tubes and are mounted in a dispenser beneath the wing of the aircraft. The chaff was released near the tops and edges of a growing small cumulus cloud. The aircraft then made penetrations of the cloud at lower levels to observe the chaff signals above the aircraft with the zenith-pointing cloud radar. This study shows that the environmental air above the cloud top descends along the downshear side of the cloud edge and is subsequently entrained back into the same cloud near the observation level. The in-cloud flow follows an inverted letter P pattern. The merits and limitations of the chaff method for tracking circulat...
Geophysical Research Letters | 2016
Eunsil Jung; Ben P. Kirtman
In this study, we use 30 years of retrospective climate model forecasts and observational estimates to show that El Nino/Southern Oscillation (ENSO) affects the amplitude of subseasonal variability of sea surface temperature (SST) in the southwest Indian Ocean, an important Tropical Intraseasonal Oscillation (TISO) onset region. The analysis shows that deeper background mixed-layer depths and warmer upper ocean conditions during El Nino reduce the amplitude of the subseasonal SST variability over Seychelles-Chagos Thermocline Ridge (SCTR), which may reduce SST-wind coupling and the amplitude of TISO variability. The opposite holds for La Nina where the shallower mixed-layer depth enhances SST variability over SCTR, which may increase SST-wind coupling and the amplitude of TISO variability.
Journal of Applied Meteorology and Climatology | 2017
Ming Fang; Bruce A. Albrecht; Eunsil Jung; Pavlos Kollias; Haflidi H. Jonsson; Ivan PopStefanija
AbstractFor the first time, the Mie notch retrieval technique is applied to airborne cloud Doppler radar observations in warm precipitating clouds to retrieve the vertical air velocity profile above the aircraft. The retrieval algorithm prescribed here accounts for two major sources of bias: aircraft motion and horizontal wind. The retrieval methodology is evaluated using the aircraft in situ vertical air velocity measurements. The standard deviations of the residuals for the retrieved and in situ measured data for an 18-s time segment are 0.21 and 0.24 m s−1, respectively; the mean difference between the two is 0.01 m s−1. For the studied cases, the total theoretical uncertainty is less than 0.19 m s−1 and the actual retrieval uncertainty is about 0.1 m s−1. These results demonstrate that the Mie notch technique combined with the bias removal procedure described in this paper can successfully retrieve vertical air velocity from airborne radar observations with low spectral broadening due to Doppler fadin...
19th International Conference on Nucleation and Atmospheric Aerosols, ICNAA 2013 | 2013
Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; W. Richard Leaitch; A. M. Macdonald; Lars Ahlm; Yi-Chun Chen; Matthew M. Coggon; A. L. Corrigan; J. S. Craven; Amanda A. Frossard; Lelia N. Hawkins; Haflidi H. Jonsson; Eunsil Jung; Jack J. Lin; A. R. Metcalf; R. L. Modini; Johannes Mülmenstädt; Greg C. Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz
Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the California coastal region.
Journal of Geophysical Research | 2013
Eunsil Jung; Bruce A. Albrecht; Joseph M. Prospero; Haflidi H. Jonsson; Sonia M. Kreidenweis
Bulletin of the American Meteorological Society | 2012
Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; Lars Ahlm; Yi-Chun Chen; Matthew M. Coggon; J. S. Craven; Amanda A. Frossard; Haflidi H. Jonsson; Eunsil Jung; Jack J. Lin; A. R. Metcalf; R. L. Modini; Johannes Mülmenstädt; G. C. Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz
Atmospheric Chemistry and Physics | 2015
Eunsil Jung; Bruce A. Albrecht; Haflidi H. Jonsson; Yi-Chun Chen; John H. Seinfeld; Armin Sorooshian; A. R. Metcalf; Siwon Song; Ming Fang; Lynn M. Russell