Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armin Sorooshian is active.

Publication


Featured researches published by Armin Sorooshian.


Journal of Geophysical Research | 2006

Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004

Armin Sorooshian; Varuntida Varutbangkul; Fred J. Brechtel; B. Ervens; Graham Feingold; Roya Bahreini; Shane M. Murphy; John S. Holloway; Elliot Atlas; G. Buzorius; Haflidi H. Jonsson; John H. Seinfeld

inorganic ions (including SO4� ) and five organic acid ions (including oxalate) were measured on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter research aircraft by a particle-into-liquid sampler (PILS) during flights over Ohio and surrounding areas. Five local atmospheric conditions were studied: (1) cloud-free air, (2) power plant plume in cloud-free air with precipitation from scattered clouds overhead, (3) power plant plume in cloud-free air, (4) power plant plume in cloud, and (5) clouds uninfluenced by local pollution sources. The aircraft sampled from two inlets: a counterflow virtual impactor (CVI) to isolate droplet residuals in clouds and a second inlet for sampling total aerosol. A strong correlation was observed between oxalate and SO4� when sampling through both inlets in clouds. Predictions from a chemical cloud parcel model considering the aqueous-phase production of dicarboxylic acids and SO4� show good agreement for the relative magnitude of SO4� and oxalate growth for two scenarios: power plant plume in clouds and clouds uninfluenced by local pollution sources. The relative contributions of the two aqueous-phase routes responsible for oxalic acid formation were examined; the oxidation of glyoxylic acid was predicted to dominate over the decay of longer-chain dicarboxylic acids. Clear evidence is presented for aqueous-phase oxalic acid production as the primary mechanism for oxalic acid formation in ambient aerosols.


Geophysical Research Letters | 2010

Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region

Armin Sorooshian; Shane Murphy; Scott Hersey; Roya Bahreini; Haflidi H. Jonsson; John H. Seinfeld

Airborne measurements in regions of varying meteorology and pollution are used to quantify the contribution of organic acids and a mass spectral marker for oxygenated aerosols, m/z 44, to the total organic aerosol budget. Organic acids and m/z 44 separately are shown to exhibit their highest organic mass fractions in the vicinity of clouds. The contribution of such oxygenated species is shown to increase as a function of relative humidity, aerosol hygroscopicity (and decreasing organic mass fraction), and is typically greater off the California coast versus the continental atmospheres studied. Reasons include more efficient chemistry and partitioning of organic acid precursors with increasing water in the reaction medium, and high aqueous-phase processing times in boundary layers with higher cloud volume fractions. These results highlight the importance of secondary organic aerosol formation in both wet aerosols and cloud droplets.


Journal of Geophysical Research | 2007

Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

Armin Sorooshian; Nga L. Ng; Arthur W. H. Chan; Graham Feingold; John H. Seinfeld

The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter participated in the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) mission during August–September 2006. A particle-into-liquid sampler (PILS) coupled to ion chromatography was used to characterize the water-soluble ion composition of aerosol and cloud droplet residual particles (976 5-min PM_(1.0) samples in total). Sulfate and ammonium dominated the water-soluble mass (NH_4+ + SO_4^(2−) = 84 ± 14%), while organic acids contributed 3.4 ± 3.7%. The average NH_4^+:SO_4^(2−) molar ratio was 1.77 ± 0.85. Particulate concentrations of organic acids increased with decreasing carbon number from C_9 to C_2. Organic acids were most abundant above cloud, presumably as a result of aqueous phase chemistry in cloud droplets, followed by subsequent droplet evaporation above cloud tops; the main product of this chemistry was oxalic acid. The evolution of organic acids with increasing altitude in cloud provides evidence for the multistep nature of oxalic acid production; predictions from a cloud parcel model are consistent with the observed oxalate:glyoxylate ratio as a function of altitude in GoMACCS cumuli. Suppressed organic acid formation was observed in clouds with relatively acidic droplets, as determined by high particulate nitrate concentrations (presumably high HNO_3 levels too) and lower liquid water content, as compared to other cloud fields probed. In the Houston Ship Channel region, an area with significant volatile organic compound emissions, oxalate, acetate, formate, benzoate, and pyruvate, in decreasing order, were the most abundant organic acids. Photo-oxidation of m-xylene in laboratory chamber experiments leads to a particulate organic acid product distribution consistent with the Ship Channel area observations.


Aerosol Science and Technology | 2006

Modeling and Characterization of a Particle-into-Liquid Sampler (PILS)

Armin Sorooshian; Fred J. Brechtel; Y. Ma; Rodney J. Weber; Andrew Corless; John H. Seinfeld

A modified particle-into-liquid sampler (PILS), based on the original design of Weber et al. (2001), is presented. The principal modification in this design is that collected liquid sample is delivered to vials held on a rotating carousel as opposed to an on-line analytical detector. A model is developed to predict aerosol mass concentrations measured by a PILS based on operating parameters and characteristics of the sampled aerosol. A backward model predicts the concentrations of the sampled aerosol based on operating parameters and concentrations measured by the PILS. Both models, which consider plumbing transmission efficiencies, droplet growth, mixing effects, and volatilization losses, predict mass concentrations that are consistent with laboratory tests for step changes in concentration. The average collection efficiency for species (Na + , K + , SO 4 2− , Cl − , NO 3 − ) from a variety of aerosols compared to simultaneous measurements with a differential mobility analyzer (DMA) exceeded 96% except for NH 4 + (88%); NH4 + is theoretically shown to be the most vulnerable to volatilization, followed by Cl − and then NO 3 − , with greater losses caused by increasing droplet pH and temperature. The characterization tests highlight the importance of reducing NH 4 + volatilization by keeping a stable tip temperature of 100°C at the point where steam and ambient air mix in the condensation chamber. Maintaining a stable tip temperature also avoids fluctuations in supersaturations that lead to increased deposition losses of larger droplets. Sample data from the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign are presented.


Journal of Geophysical Research | 2007

Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

S. Gilardoni; Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; T. S. Bates; Patricia K. Quinn; J. D. Allan; Brent J. Williams; Allen H. Goldstein; Timothy B. Onasch; D. R. Worsnop

Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids.


Journal of Geophysical Research | 2007

Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

C. Fountoukis; Athanasios Nenes; Nicholas Meskhidze; Roya Bahreini; William C. Conant; Haflidi H. Jonsson; Shane M. Murphy; Armin Sorooshian; Varuntida Varutbangkul; Fred J. Brechtel; John H. Seinfeld

This study analyzes 27 cumuliform and stratiform clouds sampled aboard the CIRPAS Twin Otter during the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) experiment. The data set was used to assess cloud droplet closure using (1) a detailed adiabatic cloud parcel model and (2) a state-of-the-art cloud droplet activation parameterization. A unique feature of the data set is the sampling of highly polluted clouds within the vicinity of power plant plumes. Remarkable closure was achieved (much less than the 20% measurement uncertainty) for both parcel model and parameterization. The highly variable aerosol did not complicate the cloud droplet closure, since the clouds had low maximum supersaturation and were not sensitive to aerosol variations (which took place at small particle sizes). The error in predicted cloud droplet concentration was mostly sensitive to updraft velocity. Optimal closure is obtained if the water vapor uptake coefficient is equal to 0.06, but can range between 0.03 and 1.0. The sensitivity of cloud droplet prediction error to changes in the uptake coefficient, organic solubility and surface tension depression suggest that organics exhibit limited solubility. These findings can serve as much needed constraints in modeling of aerosol-cloud interactions in the North America; future in situ studies will determine the robustness of our findings.


Global Biogeochemical Cycles | 2009

On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California.

Armin Sorooshian; Luz T. Padró; Athanasios Nenes; Graham Feingold; Allison McComiskey; Scott Hersey; Harmony Gates; Haflidi H. Jonsson; Steven D. Miller; Graeme L. Stephens; John H. Seinfeld

Surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll a, aerosol, and marine clouds. Periods of enhanced chlorophyll a and wind speed are coincident with increases in particulate diethylamine and methanesulfonate concentrations. The measurements indicate that amines are a source of secondary organic aerosol in the marine atmosphere. Subsaturated aerosol hygroscopic growth measurements indicate that the organic component during periods of high chlorophyll a and wind speed exhibit considerable water uptake ability. Increased average cloud condensation nucleus (CCN) activity during periods of increased chlorophyll a levels likely results from both size distribution and aerosol composition changes. The available data over the period of measurements indicate that the cloud microphysical response, as represented by either cloud droplet number concentration or cloud droplet effective radius, is likely influenced by a combination of atmospheric dynamics and aerosol perturbations during periods of high chlorophyll a concentrations.


Journal of Geophysical Research | 2009

Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

Sara Lance; Athanasios Nenes; Claudio Mazzoleni; Manvendra K. Dubey; Harmony Gates; Varuntida Varutbangkul; Tracey A. Rissman; Shane M. Murphy; Armin Sorooshian; John H. Seinfeld; Graham Feingold; Haflidi H. Jonsson

In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm^(−3) and CCN concentrations exceeding 10,000 cm^(−3). CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics.


Journal of Geophysical Research | 2011

An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

Armin Sorooshian; Anna Wonaschütz; Elias G. Jarjour; Bryce I. Hashimoto; Bret A. Schichtel; Eric A. Betterton

This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March-May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls.


Journal of Geophysical Research | 2009

Marine stratocumulus aerosol‐cloud relationships in the MASE‐II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus

Miao Ling Lu; Armin Sorooshian; Haflidi H. Jonsson; Graham Feingold; John H. Seinfeld

Observational data on aerosol-cloud-drizzle relationships in marine stratocumulus are presented from the second Marine Stratus/Stratocumulus Experiment (MASE-II) carried out in July 2007 over the eastern Pacific near Monterey, California. Observations, carried out in regions of essentially uniform meteorology with localized aerosol enhancements due to ship exhaust (“ship tracks”), demonstrate, in accord with those from numerous other field campaigns, that increased cloud drop number concentration Nc and decreased cloud top effective radius r_e are associated with increased subcloud aerosol concentration. Modulation of drizzle by variations in aerosol levels is levels is clearly evident. Variations of cloud base drizzle rate R_(cb) are found to be consistent with the proportionality, R_(cb) / H^3/N_c, where H is cloud depth. Simultaneous aircraft and A-Train satellite observations are used to quantify the precipitation susceptibility of clouds to aerosol perturbations in the eastern Pacific region.

Collaboration


Dive into the Armin Sorooshian's collaboration.

Top Co-Authors

Avatar

John H. Seinfeld

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewan Crosbie

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athanasios Nenes

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhen Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Scott Hersey

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. S. Craven

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. R. Metcalf

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lynn M. Russell

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge