Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Euridice Carmona is active.

Publication


Featured researches published by Euridice Carmona.


Biology of Reproduction | 2002

Role of Sperm Surface Arylsulfatase A in Mouse Sperm-Zona Pellucida Binding

Julierut Tantibhedhyangkul; Wattana Weerachatyanukul; Euridice Carmona; Hongbin Xu; Araya Anupriwan; Dominick Michaud; Nongnuj Tanphaichitr

Abstract We have previously described the zonae pellucidae (ZP) binding ability of a pig sperm surface protein, P68. Our recent results on peptide sequencing of 3 P68 tryptic peptides and molecular cloning of pig testis arylsulfatase A (AS-A) revealed the identity of P68 as AS-A. In this report, we demonstrate the presence of AS-A on the mouse sperm surface and its role in ZP binding. Using anti-AS-A antibody, we have shown by immunoblotting that AS-A was present in a Triton X-100 extract of mouse sperm. The presence of AS-A on the sperm plasma membrane was conclusively demonstrated by indirect immunofluorescence, immunogold electron microscopy, and AS-As desulfation activity on live mouse sperm. The AS-A remained on the head surface of in vivo capacitated sperm, as revealed by positive immunofluorescent staining of oviductal/uterine sperm. Significantly, the role of mouse sperm surface AS-A on ZP binding was demonstrated by dose-dependent decreases of sperm-ZP binding on sperm pretreatment with anti-AS-A IgG/Fab. Furthermore, Alexa-430 conjugated AS-A bound to mouse ZP of unfertilized eggs but not to fertilized ones, and this level of binding increased and approached saturation with increasing Alexa-430 AS-A concentrations. Moreover, in vivo fertilization was markedly decreased when mouse sperm pretreated with anti-AS-A IgG were artificially inseminated into females. All of these results designated a new function for AS-A in mouse gamete interaction.


Matrix Biology | 2008

Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation

Vasantha Atmuri; Dianna C. Martin; Richard Hemming; Alex Gutsol; Sharon Byers; Solmaz Sahebjam; James A. Thliveris; John S. Mort; Euridice Carmona; Judy E. Anderson; Shyamala Dakshinamurti; Barbara Triggs-Raine

Hyaluronidases are endoglycosidases that initiate the breakdown of hyaluronan (HA), an abundant component of the vertebrate extracellular matrix. In humans, six paralogous genes encoding hyaluronidase-like sequences have been identified on human chromosomes 3p21.3 (HYAL2-HYAL1-HYAL3) and 7q31.3 (SPAM1-HYAL4-HYALP1). Mutations in one of these genes, HYAL1, were reported in a patient with mucopolysaccharidosis (MPS) IX. Despite the broad distribution of HA, the HYAL1-deficient patient exhibited a mild phenotype, suggesting other hyaluronidase family members contribute to constitutive HA degradation. Hyal3 knockout (Hyal3-/-) mice were generated to determine if HYAL3 had a role in constitutive HA degradation. Hyal3-/- mice were viable, fertile, and exhibited no gross phenotypic changes. X-ray analysis, histological studies of joints, whole-body weights, organ weights and the serum HA levels of Hyal3-/- mice were normal. No evidence of glycosaminoglycan accumulation, including vacuolization, was identified in the Hyal3-/- tissues analyzed. Remarkably, the only difference identified in Hyal3-/- mice was a subtle change in the alveolar structure and extracellular matrix thickness in lung-tissue sections at 12-14 months-of-age. We conclude that HYAL3 does not play a major role in constitutive HA degradation.


Breast Cancer Research | 2015

Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases

Sébastien Tabariès; Véronique Ouellet; Brian E. Hsu; Matthew G. Annis; April A.N. Rose; Liliane Meunier; Euridice Carmona; Christine E. Tam; Anne-Marie Mes-Masson; Peter M. Siegel

IntroductionBreast cancer cells display preferences for specific metastatic sites including the bone, lung and liver. Metastasis is a complex process that relies, in part, on interactions between disseminated cancer cells and resident/infiltrating stromal cells that constitute the metastatic microenvironment. Distinct immune infiltrates can either impair the metastatic process or conversely, assist in the seeding, colonization and growth of disseminated cancer cells.MethodsUsing in vivo selection approaches, we previously isolated 4T1-derived breast cancer cells that preferentially metastasize to these organs and tissues. In this study, we examined whether the propensity of breast cancer cells to metastasize to the lung, liver or bone is associated with and dependent on distinct patterns of immune cell infiltration. Immunohistocytochemistry and immunohistofluorescence approaches were used to quantify innate immune cell infiltrates within distinct metastases and depletion of Gr1+ (Ly-6C and Ly-6G) or specifically Ly-6G+ cells was performed to functionally interrogate the role of Ly-6G+ infiltrates in promoting metastasis to these organs.ResultsWe show that T lymphocytes (CD3+), myeloid-derived (Gr-1+) cells and neutrophils (Ly-6G+ or NE+) exhibit the most pronounced recruitment in lung and liver metastases, with markedly less recruitment within bone metastatic lesions. Interestingly, these infiltrating cell populations display different patterns of localization within soft tissue metastases. T lymphocytes and granulocytic immune infiltrates are localized around the periphery of liver metastases whereas they were dispersed throughout the lung metastases. Furthermore, Gr-1+ cell-depletion studies demonstrate that infiltrating myeloid-derived cells are essential for the formation of breast cancer liver metastases but dispensable for metastasis to the lung and bone. A specific role for the granulocytic component of the innate immune infiltrate was revealed through Ly-6G+ cell-depletion experiments, which resulted in significantly impaired formation of liver metastases. Finally, we demonstrate that the CD11b+/Ly-6G+ neutrophils that infiltrate and surround the liver metastases are polarized toward an N2 phenotype, which have previously been shown to enhance tumor growth and metastasis.ConclusionsOur results demonstrate that the liver-metastatic potential of breast cancer cells is heavily reliant on interactions with infiltrating Ly-6G+ cells within the liver microenvironment.


Biology of Reproduction | 2003

Acquisition of Arylsulfatase A onto the Mouse Sperm Surface During Epididymal Transit

Wattana Weerachatyanukul; Hongbin Xu; Araya Anupriwan; Euridice Carmona; Michael G. Wade; Louis Hermo; Solange Maria da Silva; Peter Rippstein; Prasert Sobhon; Prapee Sretarugsa; Nongnuj Tanphaichitr

Abstract Arylsulfatase A (AS-A) is localized to the sperm surface and participates in sperm-zona pellucida binding. We investigated how AS-A, usually known as an acrosomal enzyme, trafficked to the sperm surface. Immunocytochemistry of the mouse testis confirmed the existence of AS-A in the acrosomal region of round and elongating spermatids. However, immunofluorescence and flow cytometry indicated the absence of AS-A on the surface of live testicular sperm. In contrast, positive AS-A staining was observed in the heads of live caudal epididymal and vas deferens sperm. The results suggested that acquisition of AS-A on the sperm surface occurred during epididymal transit. Immunocytochemistry of the epididymis revealed AS-A in narrow and apical cells in the initial segment and in clear cells in all epididymal regions. However, these epithelial cells are in the minority and are not involved in secretory activity. In the caudal epididymis and vas deferens, AS-A was also localized to principal cells, the major epithelial cells. Because principal cells have secretory activity, they may secrete AS-A into the epididymal fluid. This hypothesis was supported by our results revealing the presence of AS-A in the epididymal and vas deferens fluid (determined by immunoblotting and ELISA) and an AS-A transcript in the epididymis (by reverse transcription polymerase chain reaction). Alexa-430 AS-A bound to epididymal sperm with high affinity (Kd = 46 nM). This binding was inhibited by treatment of sperm with an antibody against sperm surface sulfogalactosylglycerolipid. This finding suggests that AS-A in the epididymal fluid may deposit onto sperm via its affinity to sulfogalactosylglycerolipid.


Biology of Reproduction | 2002

Binding of Arylsulfatase A to Mouse Sperm Inhibits Gamete Interaction and Induces the Acrosome Reaction

Euridice Carmona; Wattana Weerachatyanukul; Hongbin Xu; Arvan L. Fluharty; Araya Anupriwan; Ali Shoushtarian; Krittalak Chakrabandhu; Nongnuj Tanphaichitr

Abstract We have shown previously that male germ cell-specific sulfoglycolipid, sulfogalactosylglycerolipid (SGG), is involved in sperm-zona pellucida binding, and that SGG and its desulfating enzyme, arylsulfatase A (AS-A), coexist in the same sperm head area. However, AS-A exists at a markedly low level in sperm as compared to SGG (i.e., 1/400 of SGG molar concentration). In the present study, we investigated whether perturbation of this molar ratio would interfere with sperm-egg interaction. We demonstrated that purified AS-A bound to the mouse sperm surface through its high affinity with SGG. When capacitated, Percoll gradient-centrifuged mouse sperm were treated for 1 h with various concentrations of AS-A, their binding to zona-intact eggs was inhibited in a dose-dependent manner and reached the background level with 63 nM AS-A. This inhibition could be partially explained by an increase in premature acrosome reaction. The acrosome-reacted sperm population of the 63 nM AS-A-treated sperm sample was twice that of the control sample (treated with 63 nM ovalbumin) at 1 h (i.e., 32% vs. 15%) and rose to 53% at 2 h. This induction was presumably due to SGG aggregation attributed to AS-A, existing as a dimer at neutral pH, and could be mimicked by anti-SGG immunoglobulin (Ig) G/IgM + secondary IgG antibody. Drastic inhibition (75%) of in vivo fertilization was also observed in females inseminated with sperm suspension containing 630 nM AS-A as compared to the rate in females inseminated with sperm suspension included with 630 nM ovalbumin. Our results demonstrate a promising potential for AS-A as a nonhormonal, vaginal contraceptive.


PLOS ONE | 2011

Subtype Specific Elevated Expression of Hyaluronidase-1 (HYAL-1) in Epithelial Ovarian Cancer

Paule Héléna Yoffou; Lydia Edjekouane; Liliane Meunier; André Tremblay; Diane Provencher; Anne-Marie Mes-Masson; Euridice Carmona

Background Epithelial ovarian cancer (EOC) is morphologically heterogeneous being classified as serous, endometrioid, clear cell, or mucinous. Molecular genetic analysis has suggested a role for tumor suppressor genes located at chromosome 3p in serous EOC pathogenesis. Our objective was to evaluate the expression of HYAL1, located at chromosome 3p21.3, in these EOC subtypes, and to investigate its correlation with the expression of steroid hormone receptors. Methodology/Principal Findings We determined the mRNA expression of HYAL1, estrogen receptor (ER)-α, ERβ and progesterone receptor (PR) in EOC tumor samples and cell lines using quantitative RT-PCR. We also examined the expression of these genes in a publicly available microarray dataset. HYAL-1 enzyme activity was measured in EOC cell lines and in plasma samples from patients. We found that HYAL1 mRNA expression was elevated in clear cell and mucinous EOC tissue samples, but not in serous and endometrioid samples, normal ovaries or benign tumors. Similar results were obtained by two different techniques and with tissue sample cohorts from two independent institutions. Concordantly, HYAL1 mRNA levels and enzymatic activity were elevated only in EOC cell lines derived from clear cell and mucinous subtypes. We also showed that HYAL1 mRNA was inversely correlated to that of ERα specifically in clear cell and mucinous EOCs. Additionally, ectopic expression of ERα in a clear cell EOC cell line (ER- and PR-negative) induced 50% reduction of HYAL1 mRNA expression, supporting a role of ERα in HYAL1 gene regulation. Significantly, HYAL-1 activity was also high in the plasma of patients with these EOC subtypes. Conclusions/Significance This is the first report showing high HYAL-1 levels in EOC and demonstrating HYAL1 gene repression by ERα. Our results identify Hyaluronidase-1 as a potential target/biomarker for clear cell and mucinous EOCs and especially in tumors with low ERα levels.


PLOS ONE | 2014

RAN Nucleo-Cytoplasmic Transport and Mitotic Spindle Assembly Partners XPO7 and TPX2 Are New Prognostic Biomarkers in Serous Epithelial Ovarian Cancer

Euridice Carmona; Véronique Barrès; Kurosh Rahimi; Isabelle Létourneau; Patricia N. Tonin; Diane Provencher; Anne-Marie Mes-Masson

Purpose Epithelial ovarian cancer has the highest mortality rate of all gynecological malignancies. We have shown that high RAN expression strongly correlates with high-grade and poor patient survival in epithelial ovarian cancer. However, as RAN is a small GTPase involved in two main biological functions, nucleo-cytoplasmic transport and mitosis, it is still unknown which of these functions associate with poor prognosis. Methods To examine the biomarker value of RAN network components in serous epithelial ovarian cancer, protein expression of six specific RAN partners was analyzed by immunohistochemistry using a tissue microarray representing 143 patients associated with clinical parameters. The RAN GDP/GTP cycle was evaluated by the expression of RANBP1 and RCC1, the mitotic function by TPX2 and IMPβ, and the nucleo-cytoplasmic trafficking function by XPO7, XPOT and IMPβ. Results Based on Kaplan-Meier analyses, RAN, cytoplasmic XPO7 and TPX2 were significantly associated with poor overall patient survival, and RAN and TPX2 were associated with lower disease free survival in patients with high-grade serous carcinoma. Cox regression analysis revealed that RAN and TPX2 expression were independent prognostic factors for both overall and disease free survival, and that cytoplasmic XPO7 expression was a prognostic factor for overall patient survival. Conclusions In this systematic study, we show that RAN and two protein partners involved in its nucleo-cytoplasmic and mitotic functions (XPO7 and TPX2, respectively) can be used as biomarkers to stratify patients based on prognosis. In particular, we reported for the first time the clinical relevance of the exportin XPO7 and showed that TPX2 expression had the strongest prognostic value. These findings suggest that protein partners in each of RAN’s functions can discriminate between different outcomes in high-grade serous epithelial ovarian cancer patients. Furthermore, these proteins point to cellular processes that may ultimately be targeted to improve the survival in serous epithelial ovarian cancer.


Frontiers in Oncology | 2014

A New Spontaneously Transformed Syngeneic Model of High-Grade Serous Ovarian Cancer with a Tumor-Initiating Cell Population

Curtis W. McCloskey; Reuben L. Goldberg; Lauren E. Carter; Lisa F. Gamwell; Ensaf M. Al-Hujaily; Olga Collins; Elizabeth Macdonald; Kenneth Garson; Manijeh Daneshmand; Euridice Carmona; Barbara C. Vanderhyden

Improving screening and treatment options for patients with epithelial ovarian cancer has been a major challenge in cancer research. Development of novel diagnostic and therapeutic approaches, particularly for the most common subtype, high-grade serous ovarian cancer (HGSC), has been hampered by controversies over the origin of the disease and a lack of spontaneous HGSC models to resolve this controversy. Over long-term culture in our laboratory, an ovarian surface epithelial (OSE) cell line spontaneously transformed OSE (STOSE). The objective of this study was to determine if the STOSE cell line is a good model of HGSC. STOSE cells grow faster than early passage parental M0505 cells with a doubling time of 13 and 48 h, respectively. STOSE cells form colonies in soft agar, an activity for which M0505 cells have negligible capacity. Microarray analysis identified 1755 down-regulated genes and 1203 up-regulated genes in STOSE compared to M0505 cells, many associated with aberrant Wnt/β-catenin and Nf-κB signaling. Upregulation of Ccnd1 and loss of Cdkn2a in STOSE tumors is consistent with changes identified in human ovarian cancers by The Cancer Genome Atlas. Intraperitoneal injection of STOSE cells into severe combined immunodeficient and syngeneic FVB/N mice produced cytokeratin+, WT1+, inhibin−, and PAX8+ tumors, a histotype resembling human HGSC. Based on evidence that a SCA1+ stem cell-like population exists in M0505 cells, we examined a subpopulation of SCA1+ cells that is present in STOSE cells. Compared to SCA1− cells, SCA1+ STOSE cells have increased colony-forming capacity and form palpable tumors 8 days faster after intrabursal injection into FVB/N mice. This study has identified the STOSE cells as the first spontaneous murine model of HGSC and provides evidence for the OSE as a possible origin of HGSC. Furthermore, this model provides a novel opportunity to study how normal stem-like OSE cells may transform into tumor-initiating cells.


Journal of Cellular Physiology | 2007

Sperm surface arylsulfatase A can disperse the cumulus matrix of cumulus oocyte complexes

Alexander Wu; Araya Anupriwan; Sitthichai Iamsaard; Krittalak Chakrabandhu; Daniela Costa Santos; Tony Rupar; Benjamin K. Tsang; Euridice Carmona; Nongnuj Tanphaichitr

Cumulus cell layers of expanded cumulus oocyte complexes (COCs) are interlinked with networks of hyaluronic acid, chondroitin sulfate B proteoglycans and link proteins, and they can be dispersed by sperm surface hyaluronidases. In this report, we showed that arylsulfatase A (AS‐A), existing on the sperm head surface, also had this dispersion action. Purified AS‐A free of protease, hyaluronidase and chondroitinase activities could disperse the cumulus matrix of expanded COCs. However, this COC dispersion action was not associated with AS‐A desulfation activity, assayed by using p‐nitrocatecholsulfate (artificial substrate). COCs incubated for 1 h with sperm pretreated with anti‐AS‐A IgG in the presence of apigenin (a hyaluronidase inhibitor) did not exhibit matrix dispersion, whereas several cumulus layers were already dispersed in COCs incubated with sperm pretreated with preimmune IgG. Furthermore, sperm from AS‐A null mice showed a significant delay in COC dispersion, compared with wild‐type sperm. Within 1 h of sperm‐COC co‐incubation, the size of COCs incubated with AS‐A null sperm was 65% of the original dimension, whereas that of COCs inseminated with wild‐type sperm was only 17%. A further delay in COC dispersion by AS‐A(−/−) mouse sperm was observed when apigenin was present in the co‐incubation. We also showed for the first time that AS‐A had a specific affinity for chondroitin sulfate B, a component of cumulus matrix proteoglycan networks; this might provide a mechanism of cumulus matrix destabilization induced by sperm surface AS‐A. J. Cell. Physiol. 213: 201–211, 2007.


Endocrinology | 2008

Mammalian Hyaluronidase Induces Ovarian Granulosa Cell Apoptosis and Is Involved in Follicular Atresia

Adriana Mari Orimoto; Karine Dumaresq-Doiron; Jin-Yi Jiang; Nongnuj Tanphaichitr; Benjamin K. Tsang; Euridice Carmona

During ovarian folliculogenesis, the vast majority of follicles will undergo atresia by apoptosis, allowing a few dominant follicles to mature. Mammalian hyaluronidases comprise a family of six to seven enzymes sharing the same catalytic domain responsible for hyaluronan hydrolysis. Interestingly, some of these enzymes have been shown to induce apoptosis. In the ovary, expression of three hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) has been documented. However, their precise cellular localization and role in ovarian regulation have not yet been defined. We herein investigated the possible involvement of these enzymes in ovarian atresia. First, we established a mouse model for ovarian atresia (gonadotropin withdrawal by anti-equine chorionic gonadotropin treatment) and showed that the mRNA levels of Hyal-1, Hyal-2, and Hyal-3 were significantly increased in apoptotic granulosa cells as well as in atretic follicles. Second, using ovaries of normally cycling mice, we demonstrated the correlation of Hyal-1 mRNA and protein expression with cleavage of caspase-3. In addition, we showed that expression of all three hyaluronidases induced apoptosis in transfected granulosa cells. Significantly, the induction of apoptosis by hyaluronidases was independent of catalytic activity, because enzymatically inactive Hyal-1 mutant (D157A/E159A) was as efficient as the wild-type enzyme in apoptosis induction. The activation of the extrinsic apoptotic signaling pathway was involved in this induction, because increased levels of cleaved caspase-8, caspase-3, and poly-ADP-ribose polymerase (PARP) were observed upon hyaluronidase ectopic expression. Our present findings provide a better understanding of the role of hyaluronidases in ovarian functions, showing for the first time their involvement in follicular atresia.

Collaboration


Dive into the Euridice Carmona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nongnuj Tanphaichitr

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Saad

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Gervais

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge