Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Bandrés is active.

Publication


Featured researches published by Eva Bandrés.


Molecular Cancer | 2006

Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Eva Bandrés; E Cubedo; Xabier Agirre; R Malumbres; Ruth Zarate; Natalia Ramirez; A Abajo; A Navarro; I Moreno; M Monzó; Jesús García-Foncillas

MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Although the number of verified human miRNA is still expanding, only few have been functionally described. However, emerging evidences suggest the potential involvement of altered regulation of miRNA in pathogenesis of cancers and these genes are thought to function as both tumours suppressor and oncogenes.In our study, we examined by Real-Time PCR the expression of 156 mature miRNA in colorectal cancer. The analysis by several bioinformatics algorithms of colorectal tumours and adjacent non-neoplastic tissues from patients and colorectal cancer cell lines allowed identifying a group of 13 miRNA whose expression is significantly altered in this tumor. The most significantly deregulated miRNA being miR-31, miR-96, miR-133b, miR-135b, miR-145, and miR-183. In addition, the expression level of miR-31 was correlated with the stage of CRC tumor.Our results suggest that miRNA expression profile could have relevance to the biological and clinical behavior of colorectal neoplasia.


International Journal of Cancer | 2009

Epigenetic regulation of microRNA expression in colorectal cancer

Eva Bandrés; Xabier Agirre; Nerea Bitarte; Natalia Ramirez; Ruth Zarate; Jose Roman-Gomez; Felipe Prosper; Jesús García-Foncillas

In the last years, microRNAs (miRNA) have emerged as new molecular players involved in carcinogenesis. Deregulation of miRNAs expression has been shown in different human cancer but the molecular mechanism underlying the alteration of miRNA expression is unknown. To identify tumor‐supressor miRNAs silenced through aberrant epigenetic events in colorectal cancer (CRC), we used a sequential approach. We first identified 5 miRNAs down‐regulated in patient with colorectal cancer samples and located around/on a CpG island. Treatment with a DNA methyltransferase inhibitor and a HDAC inhibitor restored expression of 3 of the 5 microRNAs (hsa‐miR‐9, hsa‐miR‐129 and hsa‐miR‐137) in 3 CRC cell lines. Expression of hsa‐miR‐9 was inversely correlated with methylation of their promoter regions as measure by MSP and bisulphate sequencing. Further, methylation of the hsa‐miR‐9‐1, hsa‐miR‐129‐2 and hsa‐miR‐137 CpG islands were frequently observed in CRC cell lines and in primary CRC tumors, but not in normal colonic mucosa. Finally, methylation of hsa‐miR‐9‐1 was associated with the presence of lymph node metastasis. In summary, our results aid in the understanding of miRNA gene regulation showing that aberrant DNA methylation and histone modifications work together to induce silencing of miRNAs in CRC.


Clinical Cancer Research | 2009

microRNA-451 Regulates Macrophage Migration Inhibitory Factor Production and Proliferation of Gastrointestinal Cancer Cells

Eva Bandrés; Nerea Bitarte; Fernando Arias; Jackeline Agorreta; Puri Fortes; Xabi Agirre; Ruth Zarate; J.A. Diaz-Gonzalez; Natalia Ramirez; Jesús Javier Sola; Paula Jimenez; Javier Rodríguez; Jesús García-Foncillas

Purpose: microRNAs (miRNA) are small RNAs that function as post-transcriptional regulators of gene expression. Recent evidence has shown that some miRNAs can act as oncogenes or tumor suppressors. This study was conducted to evaluate the potential association of miRNA expression with clinical outcome in patients with gastric cancer. Experimental Design: Expression of 250 human mature miRNAs was measured by real-time PCR on paraffin-embedded tumor samples of 21 patients with gastric cancer stage III uniformly treated with surgical resection followed by chemoradiation. We identified the miRNAs correlated with disease-free and overall survival times, and the results were evaluated including 24 other patients. In vitro cell proliferation and radiosensitivity studies were done to support clinical data. Results: The results revealed that down-regulation of miR-451 was associated with worse prognosis. miR-451 was detected by in situ hybridization in epithelial cells and showed decreased expression in gastric and colorectal cancer versus nontumoral tissues. Overexpression of miR-451 in gastric and colorectal cancer cells reduced cell proliferation and increased sensitivity to radiotherapy. Microarray and bioinformatic analysis identified the novel oncogene macrophage migration inhibitory factor (MIF) as a potential target of miR-451. In fact, overexpression of miR-451 down-regulated mRNA and protein levels of MIF and decreased expression of reporter genes with MIF target sequences. Moreover, we found a significant inverse correlation between miR-451 and MIF expression in tumoral gastric biopsies. Conclusions: These findings support the role of miR-451 as a regulator of cancer proliferation and open new perspectives for the development of effective therapies for chemoradioresistant cancers.


Carcinogenesis | 2009

miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer

Elena Gallardo; Alfons Navarro; Nuria Viñolas; Ramon Marrades; Tania Díaz; Bernat Gel; Angels Quera; Eva Bandrés; Jesús García-Foncillas; José Ramírez; Mariano Monzo

MicroRNAs (miRNAs) have been identified as promising prognostic markers in non-small-cell lung cancer (NSCLC) since they play an important role in oncogenesis. The miR-34 family is composed of three miRNAs (miR-34a, miR-34b and miR-34c) that are part of the p53 network and whose expression is directly induced by p53 in response to DNA damage or oncogenic stress. We have analyzed the impact of miR-34 expression on relapse and overall survival in surgically resected NSCLC patients. For this purpose, we used stem-loop reverse transcription-polymerase chain reaction to analyze the expression of the miR-34 family in paired tumor and normal tissue from 70 surgically resected NSCLC patients who received no postsurgical treatment until relapse. In addition, in patients with sufficient tumor tissue, we assessed p53 mutations and the methylation status of the MIRN34A gene promoter region and correlated these findings with miR-34a expression. Molecular findings were correlated with relapse and overall survival. The miR-34 family was downregulated in tumor compared with normal tissue, and low levels of miR-34a expression were correlated with a high probability of relapse (P = 0.04). A relation was also found between MIRN34A methylation and miR-34a expression (P = 0.008). Patients with both p53 mutations and low miR-34a levels had the highest probability of relapse (P = 0.001). In the multivariate analysis, miR-34a expression emerged as an independent prognostic marker for relapse. In summary, we have identified miR-34a as a novel prognostic marker in NSCLC patients, providing a potential mechanism for estimating a patients risk of disease recurrence and a useful tool to help guide treatment decisions.


Cancer Research | 2009

Epigenetic Silencing of the Tumor Suppressor MicroRNA Hsa-miR-124a Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia

Xabier Agirre; Amaia Vilas-Zornoza; Antonio Jiménez-Velasco; José I. Martín-Subero; Lucia Cordeu; Leire Garate; Edurne San José-Enériz; Gloria Abizanda; Paula Rodriguez-Otero; Puri Fortes; José Rifón; Eva Bandrés; María José Calasanz; Vanesa Martín; Anabel Heiniger; Antonio Torres; Reiner Siebert; Jose Roman-Gomez; Felipe Prosper

Whereas transcriptional silencing of genes due to epigenetic mechanisms is one of the most important alterations in acute lymphoblastic leukemia (ALL), some recent studies indicate that DNA methylation contributes to down-regulation of miRNAs during tumorigenesis. To explore the epigenetic alterations of miRNAs in ALL, we analyzed the methylation and chromatin status of the miR-124a loci in ALL. Expression of miR-124a was down-regulated in ALL by hypermethylation of the promoter and histone modifications including decreased levels of 3mk4H3 and AcH3 and increased levels of 2mK9H3, 3mK9H3, and 3mK27H3. Epigenetic down-regulation of miR-124a induced an up-regulation of its target, CDK6, and phosphorylation of retinoblastoma (Rb) and contributed to the abnormal proliferation of ALL cells both in vitro and in vivo. Cyclin-dependent kinase 6 (CDK6) inhibition by sodium butyrate or PD-0332991 decreased ALL cell growth in vitro, whereas overexpression of pre-miR124a led to decreased tumorigenicity in a xenogeneic in vivo Rag2(-/-)gammac(-/-) mouse model. The clinical implications of these findings were analyzed in a group of 353 patients diagnosed with ALL. Methylation of hsa-miR-124a was observed in 59% of the patients, which correlated with down-regulation of miR-124a (P < 0.001). Furthermore, hypermethylation of hsa-miR-124a was associated with higher relapse rate (P = 0.001) and mortality rate (P < 0.001), being an independent prognostic factor for disease-free survival (P < 0.001) and overall survival (P = 0.005) in the multivariate analysis. These results provide the grounds for new therapeutic strategies in ALL either targeting the epigenetic regulation of microRNAs and/or directly targeting the CDK6-Rb pathway.


Stem Cells | 2011

MicroRNA‐451 Is Involved in the Self‐renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells

Nerea Bitarte; Eva Bandrés; Valentina Boni; Ruth Zarate; Javier Rodríguez; Marisol Gonzalez-Huarriz; Ines Lopez; Jesús Javier Sola; Marta M. Alonso; Puri Fortes; Jesús García-Foncillas

Many antitumor therapies affect rapidly dividing cells. However, tumor proliferation may be driven by cancer stem cells (CSCs), which divide slowly and are relatively resistant to cytotoxic drugs. Thus, many tumors may progress because CSCs are not sensitive to the treatment. In this work, we searched for target genes whose expression is involved in proliferation and chemoresistance of CSCs. Both of these processes could be controlled simultaneously by cell regulators such as microRNAs (miRNAs). Therefore, colonospheres with properties of CSCs were obtained from different colon carcinoma cells, and miRNA profiling was performed. The results showed that miR‐451 was downregulated in colonspheres versus parental cells. Surprisingly, expression of miR‐451 caused a decrease in self‐renewal, tumorigenicity, and chemoresistance to irinotecan of colonspheres. We identified cyclooxygenase‐2 (COX‐2) as an indirect miR‐451 target gene involved in sphere growth. Our results indicate that miR‐451 downregulation allows the expression of the direct target gene macrophage migration inhibitory factor, involved in the expression of COX‐2. In turn, COX‐2 allows Wnt activation, which is essential for CSC growth. Furthermore, miR‐451 restoration decreases expression of the ATP‐binding cassette drug transporter ABCB1 and results in irinotecan sensitization. These findings correlate well with the lower expression of miR‐451 observed in patients who did not respond to irinotecan‐based first‐line therapy compared with patients who did. Our data suggest that miR‐451 is a novel candidate to circumvent recurrence and drug resistance in colorectal cancer and could be used as a marker to predict response to irinotecan in patients with colon carcinoma. STEM CELLS 2011;1661–1671


Molecular Cancer Research | 2008

Down-Regulation of hsa-miR-10a in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth

Xabier Agirre; Antonio Jiménez-Velasco; Edurne San José-Enériz; Leire Garate; Eva Bandrés; Lucia Cordeu; Oscar Aparicio; Borja Saez; German Navarro; Amaia Vilas-Zornoza; Ignacio Pérez-Roger; Jesús García-Foncillas; Antonio J. Torres; Anabel Heiniger; María José Calasanz; Puri Fortes; Jose Roman-Gomez; Felipe Prosper

MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34+ cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML. (Mol Cancer Res 2008;6(12):1830–40)


Cell Research | 2008

Overlapping expression of microRNAs in human embryonic colon and colorectal cancer.

Mariano Monzo; Alfons Navarro; Eva Bandrés; Rosa Artells; Isabel Moreno; Bernat Gel; Rafael Ibeas; José A. Moreno; Francisco Martinez; Tania Díaz; Antonio Martinez; Olga Balagué; Jesús García-Foncillas

MicroRNAs (miRNAs) are essential for regulating cell differentiation and maintaining the pluripotent state of stem cells. Although dysregulation of specific miRNAs has been associated with certain types of cancer, to date no evidence has linked miRNA expression in embryonic and tumor tissues. We assessed the expression of mature miRNAs in human embryonic colon tissue, and in colorectal cancer and paired normal colon tissue. Overlapping miRNA expression was detected between embryonic colonic mucosa and colorectal cancer. We have found that the miR-17-92 cluster and its target, E2F1, exhibit a similar pattern of expression in human colon development and colonic carcinogenesis, regulating cell proliferation in both cases. In situ hybridization confirmed the high level of expression of miR-17-5p in the crypt progenitor compartment. We conclude that miRNA pathways play a major role in both embryonic development and neoplastic transformation of the colonic epithelium.


PLOS ONE | 2011

Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas

Marta M. Alonso; Ricardo Díez-Valle; Lorea Manterola; Angel Rubio; Dan Liu; Nahir Cortes-Santiago; Leire Urquiza; Patricia Jauregi; Adolfo López de Munain; Nicolás Sampron; Ander Aramburu; Sonia Tejada-Solís; Carmen Vicente; María D. Odero; Eva Bandrés; Jesús García-Foncillas; Miguel Angel Idoate; Frederick F. Lang; Juan Fueyo; Candelaria Gomez-Manzano

We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.


Molecular Cancer Therapeutics | 2010

miR-192/miR-215 Influence 5-Fluorouracil Resistance through Cell Cycle-Mediated Mechanisms Complementary to Its Post-transcriptional Thymidilate Synthase Regulation

Valentina Boni; Nerea Bitarte; Ion Cristóbal; Ruth Zarate; Javier Rodríguez; Evaristo Maiello; Jesús García-Foncillas; Eva Bandrés

Thymidylate synthase (TYMS) is a target of the most widely used chemotherapeutic agents against gastrointestinal malignancies, the fluoropyrimidine-based therapy. TYMS expression levels have been identified as predictive biomarkers for 5-fluoruracil (FU) response in colorectal cancer, but their clinical utility remains controversial. The complexity of fluoropyrimidine response must require more mechanisms that currently have not been completely elucidated. In this context, microRNAs (miRNA) may play a role in modulating chemosensitivity. By carrying out an in silico analysis coupled to experimental validation, we detected that miR-192 and miR-215 target TYMS expression in colorectal cancer cell lines. However, downregulation of TYMS by these miRNAs does not sensitize colorectal cancer cell lines to FU treatment. The overexpression of miR-192/215 significantly reduces cell proliferation by targeting cell cycle progression. This effect was partially associated with p53 status, because reduction of cell proliferation and cell cycle arrest was associated with p21 and p27 induction. The decrease of S-phase cells by these miRNAs mitigates the effects of S phase–specific drugs and suggests that other mechanisms different from TYMS overexpression are essential to direct FU resistance. Finally, ectopic expression of miR-192/215 might have stronger impact to predict FU response than TYMS inhibition. Prospective studies to elucidate the role of these miRNAs as predictive biomarkers to FU are necessary. Mol Cancer Ther; 9(8); 2265–75. ©2010 AACR.

Collaboration


Dive into the Eva Bandrés's collaboration.

Top Co-Authors

Avatar

Jesús García-Foncillas

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge