Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nerea Bitarte is active.

Publication


Featured researches published by Nerea Bitarte.


International Journal of Cancer | 2009

Epigenetic regulation of microRNA expression in colorectal cancer

Eva Bandrés; Xabier Agirre; Nerea Bitarte; Natalia Ramirez; Ruth Zarate; Jose Roman-Gomez; Felipe Prosper; Jesús García-Foncillas

In the last years, microRNAs (miRNA) have emerged as new molecular players involved in carcinogenesis. Deregulation of miRNAs expression has been shown in different human cancer but the molecular mechanism underlying the alteration of miRNA expression is unknown. To identify tumor‐supressor miRNAs silenced through aberrant epigenetic events in colorectal cancer (CRC), we used a sequential approach. We first identified 5 miRNAs down‐regulated in patient with colorectal cancer samples and located around/on a CpG island. Treatment with a DNA methyltransferase inhibitor and a HDAC inhibitor restored expression of 3 of the 5 microRNAs (hsa‐miR‐9, hsa‐miR‐129 and hsa‐miR‐137) in 3 CRC cell lines. Expression of hsa‐miR‐9 was inversely correlated with methylation of their promoter regions as measure by MSP and bisulphate sequencing. Further, methylation of the hsa‐miR‐9‐1, hsa‐miR‐129‐2 and hsa‐miR‐137 CpG islands were frequently observed in CRC cell lines and in primary CRC tumors, but not in normal colonic mucosa. Finally, methylation of hsa‐miR‐9‐1 was associated with the presence of lymph node metastasis. In summary, our results aid in the understanding of miRNA gene regulation showing that aberrant DNA methylation and histone modifications work together to induce silencing of miRNAs in CRC.


Clinical Cancer Research | 2009

microRNA-451 Regulates Macrophage Migration Inhibitory Factor Production and Proliferation of Gastrointestinal Cancer Cells

Eva Bandrés; Nerea Bitarte; Fernando Arias; Jackeline Agorreta; Puri Fortes; Xabi Agirre; Ruth Zarate; J.A. Diaz-Gonzalez; Natalia Ramirez; Jesús Javier Sola; Paula Jimenez; Javier Rodríguez; Jesús García-Foncillas

Purpose: microRNAs (miRNA) are small RNAs that function as post-transcriptional regulators of gene expression. Recent evidence has shown that some miRNAs can act as oncogenes or tumor suppressors. This study was conducted to evaluate the potential association of miRNA expression with clinical outcome in patients with gastric cancer. Experimental Design: Expression of 250 human mature miRNAs was measured by real-time PCR on paraffin-embedded tumor samples of 21 patients with gastric cancer stage III uniformly treated with surgical resection followed by chemoradiation. We identified the miRNAs correlated with disease-free and overall survival times, and the results were evaluated including 24 other patients. In vitro cell proliferation and radiosensitivity studies were done to support clinical data. Results: The results revealed that down-regulation of miR-451 was associated with worse prognosis. miR-451 was detected by in situ hybridization in epithelial cells and showed decreased expression in gastric and colorectal cancer versus nontumoral tissues. Overexpression of miR-451 in gastric and colorectal cancer cells reduced cell proliferation and increased sensitivity to radiotherapy. Microarray and bioinformatic analysis identified the novel oncogene macrophage migration inhibitory factor (MIF) as a potential target of miR-451. In fact, overexpression of miR-451 down-regulated mRNA and protein levels of MIF and decreased expression of reporter genes with MIF target sequences. Moreover, we found a significant inverse correlation between miR-451 and MIF expression in tumoral gastric biopsies. Conclusions: These findings support the role of miR-451 as a regulator of cancer proliferation and open new perspectives for the development of effective therapies for chemoradioresistant cancers.


Stem Cells | 2011

MicroRNA‐451 Is Involved in the Self‐renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells

Nerea Bitarte; Eva Bandrés; Valentina Boni; Ruth Zarate; Javier Rodríguez; Marisol Gonzalez-Huarriz; Ines Lopez; Jesús Javier Sola; Marta M. Alonso; Puri Fortes; Jesús García-Foncillas

Many antitumor therapies affect rapidly dividing cells. However, tumor proliferation may be driven by cancer stem cells (CSCs), which divide slowly and are relatively resistant to cytotoxic drugs. Thus, many tumors may progress because CSCs are not sensitive to the treatment. In this work, we searched for target genes whose expression is involved in proliferation and chemoresistance of CSCs. Both of these processes could be controlled simultaneously by cell regulators such as microRNAs (miRNAs). Therefore, colonospheres with properties of CSCs were obtained from different colon carcinoma cells, and miRNA profiling was performed. The results showed that miR‐451 was downregulated in colonspheres versus parental cells. Surprisingly, expression of miR‐451 caused a decrease in self‐renewal, tumorigenicity, and chemoresistance to irinotecan of colonspheres. We identified cyclooxygenase‐2 (COX‐2) as an indirect miR‐451 target gene involved in sphere growth. Our results indicate that miR‐451 downregulation allows the expression of the direct target gene macrophage migration inhibitory factor, involved in the expression of COX‐2. In turn, COX‐2 allows Wnt activation, which is essential for CSC growth. Furthermore, miR‐451 restoration decreases expression of the ATP‐binding cassette drug transporter ABCB1 and results in irinotecan sensitization. These findings correlate well with the lower expression of miR‐451 observed in patients who did not respond to irinotecan‐based first‐line therapy compared with patients who did. Our data suggest that miR‐451 is a novel candidate to circumvent recurrence and drug resistance in colorectal cancer and could be used as a marker to predict response to irinotecan in patients with colon carcinoma. STEM CELLS 2011;1661–1671


Molecular Cancer Therapeutics | 2010

miR-192/miR-215 Influence 5-Fluorouracil Resistance through Cell Cycle-Mediated Mechanisms Complementary to Its Post-transcriptional Thymidilate Synthase Regulation

Valentina Boni; Nerea Bitarte; Ion Cristóbal; Ruth Zarate; Javier Rodríguez; Evaristo Maiello; Jesús García-Foncillas; Eva Bandrés

Thymidylate synthase (TYMS) is a target of the most widely used chemotherapeutic agents against gastrointestinal malignancies, the fluoropyrimidine-based therapy. TYMS expression levels have been identified as predictive biomarkers for 5-fluoruracil (FU) response in colorectal cancer, but their clinical utility remains controversial. The complexity of fluoropyrimidine response must require more mechanisms that currently have not been completely elucidated. In this context, microRNAs (miRNA) may play a role in modulating chemosensitivity. By carrying out an in silico analysis coupled to experimental validation, we detected that miR-192 and miR-215 target TYMS expression in colorectal cancer cell lines. However, downregulation of TYMS by these miRNAs does not sensitize colorectal cancer cell lines to FU treatment. The overexpression of miR-192/215 significantly reduces cell proliferation by targeting cell cycle progression. This effect was partially associated with p53 status, because reduction of cell proliferation and cell cycle arrest was associated with p21 and p27 induction. The decrease of S-phase cells by these miRNAs mitigates the effects of S phase–specific drugs and suggests that other mechanisms different from TYMS overexpression are essential to direct FU resistance. Finally, ectopic expression of miR-192/215 might have stronger impact to predict FU response than TYMS inhibition. Prospective studies to elucidate the role of these miRNAs as predictive biomarkers to FU are necessary. Mol Cancer Ther; 9(8); 2265–75. ©2010 AACR.


European Journal of Cancer | 2012

Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer

Javier Rodríguez; Ruth Zarate; Eva Bandrés; Valentina Boni; Amaia Hernández; Jesús Javier Sola; Beatriz Honorato; Nerea Bitarte; Jesús García-Foncillas

BACKGROUND The immunoglobulin G1 (IgG(1)) monoclonal antibody (MoAb) Cetuximab is active in metastatic colorectal cancer (mCRC) as first or subsequent lines of therapy. Efficacy seems restricted to KRAS wild-type tumours. IgG(1) may also induce antibody dependent cell mediated citotoxicity (ADCC) by recruitment of immune effector cells. ADCC is influenced by Fc gamma receptor (FcγR) polymorphisms. We investigated the association of FcγR polymorphisms and disease control rate (DCR) in mCRC patients treated with chemotherapy plus Cetuximab. PATIENTS AND METHODS Tumour tissues from 106 patients were screened for KRAS codon 12 and 13 mutations using a sensitive multiplex assay (DxS, Manchester, United Kingdom). NRAS (codons: 12, 13 and 61), PI3K (exon 20) and BRAF (exon 15) were analysed by direct sequencing. Fcγ RIIa and Fcγ RIIIa polymorphisms were genotyped by TaqMan assays. RESULTS DCR was significantly higher in KRAS wild-type tumours (61% versus 39%, p = 0.049). In epidermal growth factor receptor (EGFR) downstream-mutated mCRC patients, those harbouring an FcγRIIa H/H genotype had a higher DCR than alternative genotypes (67% versus 33%, p = 0.017). By multivariate analysis, FcγRIIa-131H/H remained significantly correlated with DCR (p = 0.008). CONCLUSION FcγR polymorphisms may play a role in the clinical efficacy of Cetuximab in EGFR downstream mutated mCRC patients. Further research into Cetuximab immune-based mechanisms in KRAS-mutated patients seems warranted.


World Journal of Gastroenterology | 2012

Identification of colorectal cancer metastasis markers by an angiogenesis-related cytokine-antibody array

Ana Sánchez de Abajo; Nerea Bitarte; Ruth Zarate; Valentina Boni; Inés López; Marisol González-Huarriz; Javier Rodríguez; Eva Bandrés; Jesús García-Foncillas

AIM To investigate the angiogenesis-related protein expression profile characterizing metastatic colorectal cancer (mCRC) with the aim of identifying prognostic markers. METHODS The expression of 44 angiogenesis-secreted factors was measured by a novel cytokine antibody array methodology. The study evaluated vascular endothelial growth factor (VEGF) and its soluble vascular endothelial growth factor receptor (sVEGFR)-1 protein levels by enzyme immunoassay (EIA) in a panel of 16 CRC cell lines. mRNA VEGF and VEGF-A isoforms were quantified by quantitative reverse-transcription polymerase chain reaction (Q-RT-PCR) and vascular endothelial growth factor receptor (VEGFR)-2 expression was analyzed by flow cytometry. RESULTS Metastasis-derived CRC cell lines expressed a distinctive molecular profile as compared with those isolated from a primary tumor site. Metastatic CRC cell lines were characterized by higher expression of angiogenin-2 (Ang-2), macrophage chemoattractant proteins-3/4 (MCP-3/4), matrix metalloproteinase-1 (MMP-1), and the chemokines interferon γ inducible T cell α chemoattractant protein (I-TAC), monocyte chemoattractant protein I-309, and interleukins interleukin (IL)-2 and IL-1α, as compared to primary tumor cell lines. In contrast, primary CRC cell lines expressed higher levels of interferon γ (IFN-γ), insulin-like growth factor-1 (IGF-1), IL-6, leptin, epidermal growth factor (EGF), placental growth factor (PlGF), thrombopoietin, transforming growth factor β1 (TGF-β1) and VEGF-D, as compared with the metastatic cell lines. VEGF expression does not significantly differ according to the CRC cellular origin in normoxia. Severe hypoxia induced VEGF expression up-regulation but contrary to expectations, metastatic CRC cell lines did not respond as much as primary cell lines to the hypoxic stimulus. In CRC primary-derived cell lines, we observed a two-fold increase in VEGF expression between normoxia and hypoxia as compared to metastatic cell lines. CRC cell lines express a similar pattern of VEGF isoforms (VEGF₁₂₁, VEGF₁₆₅ and VEGF₁₈₉) despite variability in VEGF expression, where the major transcript was VEGF₁₂₁. No relevant expression of VEGFR-2 was found in CRC cell lines, as compared to that of human umbilical vein endothelial cells and sVEGFR-1 expression did not depend on the CRC cellular origin. CONCLUSION A distinct angiogenesis-related expression pattern characterizes metastatic CRC cell lines. Factors other than VEGF appear as prognostic markers and intervention targets in the metastatic CRC setting.


European Journal of Cancer | 2011

Association of RRM1 –37A>C polymorphism with clinical outcome in colorectal cancer patients treated with gemcitabine-based chemotherapy

Javier Rodríguez; Valentina Boni; A. Hernández; Nerea Bitarte; Ruth Zarate; M. Ponz-Sarvisé; A. Chopitea; Eva Bandrés; Jesús García-Foncillas

BACKGROUND To investigate whether single nucleotide polymorphisms (SNPs) in gemcitabine (GMB) metabolism genes were associated with clinical outcome in pre-treated metastatic colorectal cancer (mCRC) patients. PATIENTS AND METHODS SNPs of hCNT1, hENT1, CDA, dCTD and RRM1 genes were evaluated in 95 mCRC patients and detected using TaqMan genotyping assays. Association of genotypes with overall response rate (ORR), time to progression (TTP) and overall survival (OS) was tested by univariate and multivariate analysis. RRM1 -37A>C polymorphism was correlated with GMB IC50 value and with the RRM1 gene expression level in CRC cell lines. RESULTS The ORR was 38.9%. The median TTP and OS were 4 and 14.3 months, respectively. By multivariate analysis, patients carrying the RRM1 -37CC genotype or the CDA A-76 C-containing allele had a significantly higher likelihood of achieving a tumour response. RRM1 -37A>C polymorphism remained associated with clinical efficacy (TTP). In vitro experiments, in CRC cell lines, showed that the RRM1 A-37C genotype was associated with the levels of RRM1 expression and with GMB IC50 values. Finally, the down-regulation of RRM1 with a specific siRNA strongly influenced GMB sensitivity. CONCLUSION RRM1 -37A>C polymorphism may represent a useful biomarker to select mCRC patients most likely to benefit from GMB-based salvage therapy.


Injury-international Journal of The Care of The Injured | 2018

Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model

Laura Montes-Medina; Alberto Hernandez-Fernandez; Araika Gutiérrez-Rivera; Purificación Ripalda-Cemboráin; Nerea Bitarte; Virginia Pérez-López; Froilán Granero-Moltó; Felipe Prosper; Ander Izeta

Acceleration of the consolidation of the distracted bone is a relevant medical need. As a platform to improve in vivo bone engineering, we developed a novel distraction osteogenesis (DO) model in a rabbit large bone (femur) and tested if the application of cultured bone marrow stromal cells (BMSCs) immediately after the osteotomy promotes the formation of bone. This report consists of two components, an animal study to evaluate the quality of the regenerate following different treatments and an in vitro study to evaluate osteogenic potential of BMSC cultures. To illuminate the mechanism of action of injected cells, we tested stem cell cultures enriched in osteogenic-BMSCs (O-BMSCs) as compared with cultures enriched in non-osteogenic BMSCs (NO-BMSCs). Finally, we included a group of animals treated with biomaterials (fibrin and ground cortical bone) in addition to cells. Injection of O-BMSCs promoted the maturity of distracted callus and decreased fibrosis. When combined with biomaterials, O-BMSCs modified the ossification pattern from endochondral to intramembranous type. The use of NO-BMSCs not only did not increase the maturity but also increased porosity of the bone. These preclinical results indicate that the BMSC cultures must be tested in vitro prior to clinical use, since a number of factors may influence their outcome in bone formation. We hypothesize that the use of osteogenic BMSCs and biomaterials could be clinically beneficial to shorten the consolidation period of the distraction and the total period of bone lengthening.


European Journal of Cancer | 2008

Epigenetic events in normal colonic mucosa surrounding colorectal cancer lesions

Natalia Ramirez; Eva Bandrés; Alfons Navarro; A. Pons; S. Jansa; Isabel Moreno; F. Martínez-Rodenas; Ruth Zarate; Nerea Bitarte; Mariano Monzo; Jesús García-Foncillas


World Journal of Gastroenterology | 2007

Pharmacogenomics in colorectal cancer: the first step for individualized-therapy.

Eva Bandrés; Ruth Zarate; Natalia Ramirez; Ana Sánchez de Abajo; Nerea Bitarte; Jesús García-Foncillas

Collaboration


Dive into the Nerea Bitarte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Sánchez de Abajo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Boni

Chartered Institute of Management Accountants

View shared research outputs
Researchain Logo
Decentralizing Knowledge