Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Barbara Holzer is active.

Publication


Featured researches published by Eva Barbara Holzer.


New Journal of Physics | 2006

Protection of the CERN Large Hadron Collider

R. Schmidt; R. Assmann; Etienne Carlier; B. Dehning; R Denz; B. Goddard; Eva Barbara Holzer; V. Kain; B. Puccio; B. Todd; J. Uythoven; J. Wenninger; Markus Zerlauth

TheLargeHadronCollider(LHC)atCERNwillcollidetwocounter- rotating proton beams, each with an energy of 7TeV. The energy stored in the superconducting magnet system will exceed 10GJ, and each beam has a stored energy of 362MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failureextendsfrom ≈mstoafewminutes—failuresmustbedetectedsufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.


ieee nuclear science symposium | 2005

Beam loss monitoring system for the LHC

Eva Barbara Holzer; B. Dehning; Ewald Effinger; Jonathan Emery; G. Ferioli; José Luis Gonzalez; E. Gschwendtner; Gianluca Guaglio; Michael Hodgson; D. Kramer; R. Leitner; L. Ponce; V. Prieto; M. Stockner; Christos Zamantzas

One of the most critical elements for the protection of CERNs Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. It must prevent the superconducting magnets from quenching and protect the machine components from damages, as a result of critical beam losses. By measuring the loss pattern, the BLM system helps to identify the loss mechanism. Special monitors will be used for the setup and control of the collimators. The specification for the BLM system includes a very high reliability (tolerable failure rate of 10/sup -7/ per hour) and a high dynamic range of 10/sup 8/ (10/sup 13/ at certain locations) of the particle fluencies to be measured. In addition, a wide range of integration times (40 /spl mu/s to 84 s) and a fast (one turn) trigger generation for the dump signal are required. This paper describes the complete design of the BLM system, including the monitor types (ionization chambers and secondary emission monitors), the design of the analogue and digital readout electronics as well as the data links and the trigger decision logic.


Physical Review Special Topics-accelerators and Beams | 2009

Measurements of heavy ion beam losses from collimation

Roderik Bruce; R. Assmann; G. Bellodi; Chiara Bracco; H. Braun; S. Gilardoni; Eva Barbara Holzer; John M. Jowett; Stefano Redaelli; T Weiler

The collimation efficiency for Pb-208(82+) ion beams in the LHC is predicted to be lower than requirements Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb-208(82+) ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation. (Less)


Physical Review Special Topics-accelerators and Beams | 2015

Testing beam-induced quench levels of LHC superconducting magnets

Bernhard Auchmann; J. Wenninger; Mariusz Sapinski; Eleftherios Skordis; B. Dehning; G. Bellodi; Vera Chetvertkova; Chiara Bracco; Markus Zerlauth; Stefano Redaelli; Anton Lechner; Roderik Bruce; Agnieszka Priebe; Mateusz Jakub Bednarek; R. Schmidt; P.P. Granieri; M. Solfaroli; Arjan Verweij; E. Nebot Del Busto; T Baer; Nikhil Vittal Shetty; Daniel Valuch; D Wollmann; Belen Salvachua; Jens Steckert; Eva Barbara Holzer; Wolfgang Höfle; F. Cerutti

In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.


Archive | 2012

UFOs in the LHC after LS1

T Baer; Anton Lechner; N. Garrel; Andrea Ferrari; Kain; L Norderhaug Drosdal; Vlachoudis; J. Wenninger; B Velghe; Christos Zamantzas; R Morón Ballester; A Nordt; J M Jimenez; J. Uythoven; E Nebot Del Busto; A Gérardin; F. Cerutti; B. Goddard; M. Misiowiec; L Ducimetière; F. Zimmermann; M.J. Barnes; N Fuster Martinez; Stephen Jackson; B. Dehning; Eva Barbara Holzer; Etienne Carlier; Mertens

UFOs (“Unidentified Falling Objects”) are potentially a major luminosity limitation for nominal LHC operation. With large-scale increases of the BLM thresholds, their impact on LHC availability was mitigated in the second half of 2011. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. In this paper, the state of knowledge is summarized and extrapolations for LHC operation after LS1 are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.


ieee nuclear science symposium | 2006

Measurements and Simulations of Ionization Chamber Signals in Mixed Radiation Fields for the LHC BLM System

M. Stockner; B. Dehning; Christian Fabjan; Gianfranco Ferioli; Eva Barbara Holzer

The LHC beam loss monitoring (BLM) system must prevent the superconducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets, which are measured by the monitors installed outside of the cryostat around each quadrupole magnet. They probe the far transverse tail of the hadronic shower. The specification for the BLM system includes a factor of two absolute precision on the prediction of the quench levels. To reach this accuracy a number of simulations are being combined to calibrate the monitor signals. To validate the monitor calibration the simulations are compared with test measurements. This paper will focus on the simulated prediction of the development of the hadronic shower tails and the signal response of ionization chambers to various particle types and energies. Test measurements have been performed at CERN and DESY and compared to Geant4 simulations.


ieee particle accelerator conference | 2007

LHC beam loss detector design: Simulation and measurements

B. Dehning; Ewald Effinger; Jonathan Emery; G. Ferioli; Eva Barbara Holzer; D. Kramer; L. Ponce; M. Stockner; Christos Zamantzas

The beam loss monitoring (BLM) system is integrated in the active equipment protection system of the LHC. It determines the number of particles lost from the primary hadron beam by measuring the radiation field of the shower particles outside of the vacuum chamber. The LHC BLM system will use ionization chambers as its standard detectors but in the areas where very high dose rates are expected, the secondary emission monitor (SEM) chambers will be additionally employed because of their high linearity, low sensitivity and fast response. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. The prototypes were calibrated by proton beams. For the calibration of the BLM system the signal response of the ionization chamber is simulated in Geant4 for all relevant particle types and energies (keV to TeV range). The results are validated by comparing the simulations to measurements using protons, neutrons, photons and mixed radiation fields at various energies and intensities.


Journal of Physics G | 2003

Muon phase rotation and cooling: simulation work at CERN

G Franchetti; S. Gilardoni; K. Hanke; Eva Barbara Holzer; Alessandra Lombardi; M Migliorati; F Tazzioli; C Vaccarezza

We present simulation work performed at CERN and collaborating institutes concerning the muon front-end of a neutrino factory and a possible muon cooling experiment. The front-end in the CERN scheme of a neutrino factory has been revised, eliminating the 44 MHz cavities and starting directly with 88 MHz. Two options for a muon cooling experiment have been studied, one based on the 88 MHz CERN cooling channel, and the other based on the 200 MHz super FOFO channel of the US study II design. A figure of merit for the cooling efficiency is discussed.


ieee nuclear science symposium | 2007

Very high radiation detector for the LHC BLM system based on secondary electron emission

D. Kramer; B. Dehning; Eva Barbara Holzer; Gianfranco Ferioli

Beam loss monitoring (BLM) system plays a vital role in the active protection of the LHC accelerators elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the secondary emission monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its secondary emission yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. The prototypes were calibrated by proton beams in CERN PS Booster dump line, SPS transfer line and in PSI Optis line. The results were compared to the simulations.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Simulation of the Pion Decay Channel of a Neutrino Factory

Eva Barbara Holzer

Abstract In the pion decay channel of a neutrino factory the particles are transported in a solenoidal magnetic field, a 1.8 T constant field in the CERN reference scenario. Increasing the field strength decreases the transverse emittance of the decay muons. To define a lower limit on the achievable μ emittance, the reference scenario is compared with a study case where pions decay in a field of 20 T . This simulation shows that in any realistic scenario the μ emittance will only be reduced by less than 21% in each transverse plane as compared to the reference scenario, and at the expense of an increase in longitudinal emittance.

Researchain Logo
Decentralizing Knowledge