Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva C. Sonnenschein is active.

Publication


Featured researches published by Eva C. Sonnenschein.


Marine Drugs | 2011

The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

Adrianna Ianora; Matthew G. Bentley; Gary S. Caldwell; Raffaella Casotti; Allan Cembella; Jonna Engström-Öst; Claudia Halsband; Eva C. Sonnenschein; Catherine Legrand; Carole A. Llewellyn; Renata Pilkaityte; Georg Pohnert; Arturas Razinkovas; Giovanna Romano; Urban Tillmann; Diana Vaiciute

Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.


BMC Genomics | 2015

Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria

Henrique Machado; Eva C. Sonnenschein; Jette Melchiorsen; Lone Gram

BackgroundAntibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters.ResultsIndependently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known.ConclusionsUtilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner – an approach that will facilitate natural product discovery in the future.


Microbial Biotechnology | 2016

Monitoring and managing microbes in aquaculture - Towards a sustainable industry.

Mikkel Bentzon-Tilia; Eva C. Sonnenschein; Lone Gram

Microorganisms are of great importance to aquaculture where they occur naturally, and can be added artificially, fulfilling different roles. They recycle nutrients, degrade organic matter and, occasionally, they infect and kill the fish, their larvae or the live feed. Also, some microorganisms may protect fish and larvae against disease. Hence, monitoring and manipulating the microbial communities in aquaculture environments hold great potential; both in terms of assessing and improving water quality, but also in terms of controlling the development of microbial infections. Using microbial communities to monitor water quality and to efficiently carry out ecosystem services within the aquaculture systems may only be a few years away. Initially, however, we need to thoroughly understand the microbiomes of both healthy and diseased aquaculture systems, and we need to determine how to successfully manipulate and engineer these microbiomes. Similarly, we can reduce the need to apply antibiotics in aquaculture through manipulation of the microbiome, i.e. by the use of probiotic bacteria. Recent studies have demonstrated that fish pathogenic bacteria in live feed can be controlled by probiotics and that mortality of infected fish larvae can be reduced significantly by probiotic bacteria. However, the successful management of the aquaculture microbiota is currently hampered by our lack of knowledge of relevant microbial interactions and the overall ecology of these systems.


Marine Drugs | 2014

Global and phylogenetic distribution of quorum sensing signals, acyl homoserine lactones, in the family of Vibrionaceae.

Bastian Barker Rasmussen; Kristian Fog Nielsen; Henrique Machado; Jette Melchiorsen; Lone Gram; Eva C. Sonnenschein

Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.


Applied and Environmental Microbiology | 2012

Chemotaxis of Marinobacter adhaerens and Its Impact on Attachment to the Diatom Thalassiosira weissflogii

Eva C. Sonnenschein; Desalegne Abebew Syit; Hans-Peter Grossart; Matthias S. Ullrich

ABSTRACT Alga-bacterium interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells, as demonstrated by addition of diatom cell homogenate or diatom culture supernatant to soft agar, suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens, with the clusters showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutations in the genes cheA, cheB, chpA, and chpB, which encode histidine kinases and methylesterases and which are putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility, were generated and mutants with the mutations were phenotypically analyzed. ΔcheA and ΔcheB mutants were found to be swimming deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild type and its chemotaxis mutants in cocultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to that for the wild type. Our results highlight the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems.


Journal of Microbiological Methods | 2011

Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells

Eva C. Sonnenschein; Astrid Gärdes; Shalin Seebah; Ingrid Torres-Monroy; Hans-Peter Grossart; Matthias S. Ullrich

Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. Many heterotrophic bacteria ubiquitously found in diverse marine environments interact with marine algae and thus impact organic matter and energy cycling in the ocean. In particular, Marinobacter adhaerens HP15 induces aggregate formation while interacting with the diatom, Thalassiosira weissflogii. To study this effect at the molecular level, a genetic tool system was developed for strain HP15. The antibiotic susceptibility spectrum of this organism was determined and electroporation and conjugation protocols were established. Among various plasmids of different incompatibility groups, only two were shown to replicate in M. adhaerens. 1.4×10(-3) transconjugants per recipient were obtained for a broad-host-range vector. Electroporation efficiency corresponded to 1.1×10(5)CFU per μg of DNA. Transposon and gene-specific mutageneses were conducted for flagellum biosynthetic genes. Mutant phenotypes were confirmed by swimming assay and microscopy. Successful expression of two reporter genes in strain HP15 revealed useful tools for gene expression analyses, which will allow studying diverse bacteria-algae interactions at the molecular level and hence to gain a mechanistic understanding of micro-scale processes underlying ocean basin-scale processes. This study is the first report for the genetic manipulation of a Marinobacter species which specifically interacts with marine diatoms and serves as model to additionally analyze various previously reported Marinobacter-algae interactions in depth.


The ISME Journal | 2017

Global occurrence and heterogeneity of the Roseobacter -clade species Ruegeria mobilis

Eva C. Sonnenschein; Kristian Fog Nielsen; Paul D'Alvise; Cisse Hedegaard Porsby; Jette Melchiorsen; Jens Heilmann; Panos G. Kalatzis; Mario López-Pérez; Boyke Bunk; Cathrin Spröer; Mathias Middelboe; Lone Gram

Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99–100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.


Environmental Microbiology Reports | 2018

Phylogenetic distribution of roseobacticides in the Roseobacter group and their effect on microalgae: Distribution of roseobacticides and their effect

Eva C. Sonnenschein; Christopher Phippen; Mikkel Bentzon-Tilia; Silas Anselm Rasmussen; Kristian Fog Nielsen; Lone Gram

The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P. inhibens, P. gallaeciensis and P. piscinae strains. One TDA-producing Phaeobacter, 27-4, did not produce roseobacticides, possibly due to a transposable element. TDA-producing Ruegeria and Pseudovibrio did not produce roseobacticides. Addition of roseobacticide-containing bacterial extracts affected the growth of the microalgae Rhodomonas salina, Thalassiosira pseudonana and Emiliania huxleyi, while growth of Tetraselmis suecica was unaffected. During co-cultivation, growth of E. huxleyi was initially stimulated by the roseobacticide producer DSM 17395, while the subsequent decline in algal cell numbers during senescence was enhanced. Strain 27-4 that does not produce roseobacticides had no effect on algal growth. Both bacterial strains, DSM 17395 and 27-4, grew during co-cultivation presumably utilizing algal exudates. Furthermore, TDA-producing roseobacters have potential as probiotics in marine larviculture and it is promising that the live feed Tetraselmis was unaffected by roseobacticides-containing extracts.


International Journal of Systematic and Evolutionary Microbiology | 2017

Phaeobacter piscinae sp. nov., a species of the Roseobacter group and potential aquaculture probiont

Eva C. Sonnenschein; Christopher Phippen; Kristian Fog Nielsen; Ramona Valentina Mateiu; Jette Melchiorsen; Lone Gram; Jörg Overmann; Heike M. Freese

Four heterotrophic, antimicrobial, motile, marine bacterial strains, 27-4T, 8-1, M6-4.2 and S26, were isolated from aquaculture units in Spain, Denmark and Greece. All four strains produced the antibiotic compound tropodithietic acid, which is a key molecule in their antagonism against fish pathogenic bacteria. Cells of the strains were Gram-reaction-negative, rod-shaped and formed star-shaped aggregates in liquid culture and brown-coloured colonies on marine agar. The predominant cellular fatty acids were C18 : 1ω7c, C16 : 0, C11 methyl C18 : 1ω7c and C16 : 0 2-OH, and the polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an aminolipid, a phospholipid and an unidentified lipid. The strains grew optimally at 31-33 °C. Growth was observed at a salt concentration between 0.5 and 5-6 % NaCl with an optimum at 2-3 %. The pH range for growth of the strains was from pH 6 to 8-8.5 with an optimum at pH 7. Based on 16S rRNA gene sequence analysis, the strains are affiliated with the genus Phaeobacter. The genome sequences of the strains have a DNA G+C content of 60.1 % and share an average nucleotide identity (ANI) of more than 95 %. The four strains are distinct from the type strains of the closely related species Phaeobactergallaeciensis and Phaeobacterinhibens based on an ANI of 90.5-91.7 and 89.6-90.4 %, respectively, and an in silico DNA-DNA hybridization relatedness of 43.9-46.9 and 39.8-41.9 %, respectively. On the basis of phylogenetic analyses as well as phenotypic and chemotaxonomic properties, the isolates are considered to represent a novel species, for which the name Phaeobacter piscinae sp. nov. is proposed. The type strain is 27-4T (=DSM 103509T=LMG 29708T).


bioRxiv | 2018

Phylogenetic distribution of roseobacticides in the Roseobacter group and their effect on microalgae

Eva C. Sonnenschein; Christopher Phippen; Mikkel Bentzon-Tilia; Silas Anselm Rasmussen; Kristian Fog Nielsen; Lone Gram

The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P. inhibens, P. gallaeciensis and P. piscinae strains. One TDA-producing Phaeobacter strain, 27-4, was unable to produce roseobacticides, possibly due to a transposable element. TDA-producing Ruegeria mobilis and Pseudovibrio did not produce roseobacticides. Addition of roseobacticide-containing bacterial extracts affected the growth of the microalgae Rhodomonas salina, Thalassiosira pseudonana and Emiliania huxleyi, while growth of Tetraselmis suecica was unaffected. During co-cultivation, growth of E. huxleyi was initially stimulated by the roseobacticide producer DSM 17395, while the subsequent decline in algal cell numbers during senescence was enhanced. Strain 27-4 that does not produce roseobacticides had no effect on algal growth. Both bacterial strains, DSM 17395 and 27-4, grew during co-cultivation presumably utilizing algal exudates. Furthermore, TDA-producing roseobacters have potential as probiotics in marine larviculture and it is promising that the live feed Tetraselmis was unaffected by roseobacticides-containing extracts. Originality-significance statement Some Roseobacter-group bacteria produce the antibacterial compound tropodithetic acid (TDA) and have potential as probiotics in marine aquaculture. However, a few of these strains additionally produce algaecidal compounds, the roseobacticides, which would restrict their use in marine larviculture where algae are used as live feed for fish larvae. We herein found that roseobacticides are limited to TDA-producing Phaeobacter strains and were not biosynthesized by TDA-producers outside this genus. Roseobacticides affected several strains of microalgae, but not the chlorophyte that is used as live feed in the aquaculture industry. Thus, the application of Roseobacter strains as probiotics is not hampered. Furthermore, these results demonstrate how Roseobacter-group strains act as gardeners of microalgae and thereby would be involved in environmental processes on a larger scale.

Collaboration


Dive into the Eva C. Sonnenschein's collaboration.

Top Co-Authors

Avatar

Lone Gram

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Kristian Fog Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jette Melchiorsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Mikkel Bentzon-Tilia

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Christopher Phippen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Henrique Machado

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Bastian Barker Rasmussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Silas Anselm Rasmussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Joris Beld

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge