Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Cífková is active.

Publication


Featured researches published by Eva Cífková.


Journal of Chromatography A | 2011

Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography–mass spectrometry

Miroslav Lísa; Eva Cífková; Michal Holčapek

Lipids are important components in all biological tissues having many essential roles associated with the proper function of the organism. Their analysis in the biological tissues and body fluids is a challenging task due to the extreme sample complexity of polar lipids and to their amphiphilic character. In this work, we describe a new method for the characterization of the lipid composition in various tissues, using off-line two-dimensional coupling of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) high-performance liquid chromatography coupled to electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectrometry. In the first dimension the total lipid extracts are fractioned using HILIC into individual lipid classes. In total, 19 lipid classes (+3 regioisomeric pairs) that cover a wide range of polarities are separated in one analytical run, which is the highest number of analyzed lipid classes reported so far. The lysophospholipid regioisomers are also separated in HILIC mode followed by the identification based on the characteristic ESI mass spectra. The collected fractions of the various lipid classes are further separated in the RP mode, which offers an excellent resolution of the individual lipid species. Their ESI or APCI mass spectra give correct information on the fatty acid composition and on the individual regioisomeric positions on the glycerol skeleton. Off-line coupling of both modes enables the comprehensive analysis of plant and animal samples as illustrated on the analysis of egg yolk, soya and porcine brain tissues.


Analytical Chemistry | 2012

Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach.

Eva Cífková; Michal Holčapek; Miroslav Lísa; Magdaléna Ovčačíková; Antonín Lyčka; Frederic Lynen; Pat Sandra

The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.


Lipids | 2013

Nontargeted Lipidomic Characterization of Porcine Organs Using Hydrophilic Interaction Liquid Chromatography and Off-Line Two-Dimensional Liquid Chromatography–Electrospray Ionization Mass Spectrometry

Eva Cífková; Michal Holčapek; Miroslav Lísa

Abstract Lipids form a significant part of animal organs and they are responsible for important biological functions, such as semi-permeability and fluidity of membranes, signaling activity, anti-inflammatory processes, etc. We have performed a comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs. Detailed information on identified lipid species inside classes are obtained based on relative abundances of deprotonated molecules [M−H]− in the negative-ion ESI mass spectra, which provides important knowledge on phosphatidylethanolamines and their different forms of fatty acyl linkage (ethers and plasmalogens), phosphatidylinositols, and hexosylceramides containing nonhydroxy- and hydroxy-fatty acyls. The detailed analysis of identified lipid classes using reversed-phase liquid chromatography in the second dimension was performed for porcine brain to determine more than 160 individual lipid species containing attached fatty acyls of different acyl chain length, double-bond number, and positions on the glycerol skeleton. The fatty acid composition of porcine organs is determined by gas chromatography with flame ionization detection after the transesterification with sodium methoxide.


Journal of Chromatography A | 2015

Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry.

Michal Holčapek; Eva Cífková; Blanka Červená; Miroslav Lísa; Jitka Vostálová; Jan Galuszka

A novel normal-phase (NP) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method is developed for a separation and quantitation of nonpolar lipid classes occurring in human plasma, erythrocytes and plasma lipoprotein fractions. The baseline class separation of cholesteryl esters (CE), cholesterol, triacylglycerols (TG), regioisomers of 1,2- and 1,3-diacylglycerols (DG) and 1-monoacylglycerols (1-MG) is achieved using an optimized hexane - 2-propanol-acetonitrile mobile phase within 18min for all nonpolar lipid classes or only 9min excluding monoacylglycerols not detected in studied samples. The determination of individual nonpolar lipid classes is performed by the response factor approach and the use of dioleoyl ethylene glycol as a single internal standard. Polar lipid classes, such as phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), sphingomyelins (SM) and lysophosphatidylcholines (LPC), are separated by hydrophilic interaction liquid chromatography (HILIC) using 5mmol/L aqueous ammonium acetate-methanol-acetonitrile gradient within 13minutes. The quantitation of polar lipid classes is done by a similar approach as for nonpolar lipid classes, but a different internal standard (sphingosyl PE d17:1/12:0) is used. The complementary information on fatty acyl profiles after the transesterification of the total lipid extract is obtained by gas chromatography with flame ionization detection (GC/FID). The applicability of developed methodology for fast and comprehensive characterization of blood lipidome is illustrated on samples of human plasma, erythrocytes, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) fractions.


Analytical and Bioanalytical Chemistry | 2015

Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis

Eva Cífková; Michal Holčapek; Miroslav Lísa; David Vrána; Jiří Gatěk; Bohuslav Melichar

The comprehensive approach for the lipidomic characterization of human breast cancer and surrounding normal tissues is based on hydrophilic interaction liquid chromatography (HILIC)–electrospray ionization mass spectrometry (ESI-MS) quantitation of polar lipid classes of total lipid extracts followed by multivariate data analysis using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS). This analytical methodology is applied for the detailed lipidomic characterization of ten patients with the goal to find the statistically relevant differences between tumor and normal tissues. This strategy is selected for better visualization of differences, because the breast cancer tissue is compared with the surrounding healthy tissue of the same patient, therefore changes in the lipidome are caused predominantly by the tumor growth. A large increase of total concentrations for several lipid classes is observed, including phosphatidylinositols, phosphatidylethanolamines, phosphatidylcholines, and lysophosphatidylcholines. Concentrations of individual lipid species inside the abovementioned classes are also changed, and in some cases, these differences are statistically significant. PCA and OPLS analyses enable a clear differentiation of tumor and normal tissues based on changes of their lipidome. A notable decrease of relative abundances of ether and vinylether (plasmalogen) lipid species is detected for phosphatidylethanolamines, but no difference is apparent for phosphatidylcholines.


Journal of Chromatography A | 2016

Hydrophilic interaction liquid chromatographymass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes

Eva Cífková; Roman Hájek; Miroslav Lísa; Michal HolĿapek

The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts.


Journal of Chromatography A | 2016

Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography–electrospray ionization mass spectrometry

Magdaléna Ovčačíková; Miroslav Lísa; Eva Cífková; Michal Holčapek

Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification.


Journal of Chromatography B | 2015

Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis

Michal Holčapek; Blanka Červená; Eva Cífková; Miroslav Lísa; Vitaliy Chagovets; Jitka Vostálová; Martina Bancířová; Jan Galuszka; Martin Hill

Differences among lipidomic profiles of healthy volunteers, obese people and three groups of cardiovascular disease (CVD) patients are investigated with the goal to differentiate individual groups based on the multivariate data analysis (MDA) of lipidomic data from plasma, erythrocytes and lipoprotein fractions of more than 50 subjects. Hydrophilic interaction liquid chromatography on ultrahigh-performance liquid chromatography (HILIC-UHPLC) column coupled with electrospray ionization mass spectrometry (ESI-MS) is used for the quantitation of four classes of polar lipids (phosphatidylethanolamines, phosphatidylcholines, sphingomyelins and lysophosphatidylcholines), normal-phase UHPLC-atmospheric pressure chemical ionization MS (NP-UHPLC/APCI-MS) is applied for the quantitation of five classes of nonpolar lipids (cholesteryl esters, triacylglycerols, sterols, 1,3-diacylglycerols and 1,2-diacylglycerols) and the potential of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is tested for the fast screening of all lipids without a chromatographic separation. Obtained results are processed by unsupervised (principal component analysis) and supervised (orthogonal partial least squares) MDA approaches to highlight the largest differences among individual groups and to identify lipid molecules with the highest impact on the group differentiation.


Journal of Chromatography A | 2017

Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods

Miroslav Lísa; Eva Cífková; Maria Khalikova; Magdaléna Ovčačíková; Michal Holčapek

Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements.


Rapid Communications in Mass Spectrometry | 2017

Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography - electrospray ionization mass spectrometry and multivariate data analysis.

Eva Cífková; Miroslav Lísa; Roman Hrstka; David Vrána; Jiří Gatěk; Bohuslav Melichar; Michal Holčapek

RATIONALE The goal of this work is the comparison of differences in the lipidomic compositions of human cell lines derived from normal and cancerous breast tissues, and tumor vs. normal tissues obtained after the surgery of breast cancer patients. METHODS Hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC/ESI-MS) using the single internal standard approach and response factors is used for the determination of relative abundances of individual lipid species from five lipid classes in total lipid extracts of cell lines and tissues. The supplementary information on the fatty acyl composition is obtained by gas chromatography/mass spectrometry (GC/MS) of fatty acid methyl esters. Multivariate data analysis (MDA) methods, such as nonsupervised principal component analysis (PCA), hierarchical clustering analysis (HCA) and supervised orthogonal partial least-squares discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples and the correlation of similarity between cell lines and tissues either for tumor or normal samples. RESULTS MDA methods are used for differentiation of sample groups and also for identification of the most up- and downregulated lipids in tumor samples in comparison to normal samples. Observed changes are subsequently generalized and correlated with data from tumor and normal tissues of breast cancer patients. In total, 123 lipid species are identified based on their retention behavior in HILIC and observed ions in ESI mass spectra, and relative abundances are determined. CONCLUSIONS MDA methods are applied for a clear differentiation between tumor and normal samples both for cell lines and tissues. The most upregulated lipids are phospholipids (PL) with a low degree of unsaturation (e.g., 32:1 and 34:1) and also some highly polyunsaturated PL (e.g., 40:6), while the most downregulated lipids are PL containing polyunsaturated fatty acyls (e.g., 20:4), plasmalogens and ether lipids. Copyright

Collaboration


Dive into the Eva Cífková's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roman Hájek

University of Pardubice

View shared research outputs
Top Co-Authors

Avatar

Bohuslav Melichar

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonín Lyčka

University of Hradec Králové

View shared research outputs
Top Co-Authors

Avatar

Kateřina Vávrová

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge