Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miroslav Lísa is active.

Publication


Featured researches published by Miroslav Lísa.


Journal of Chromatography A | 2012

Recent developments in liquid chromatography-mass spectrometry and related techniques.

Michal Holčapek; Robert Jirásko; Miroslav Lísa

This review summarizes the state-of-art in liquid chromatography-mass spectrometry (LC-MS) and related techniques with the main focus on recent developments in the last decade. LC-MS records an enormous growth in recent years due to the application potential in analytical chemistry, biochemistry, pharmaceutical analysis, clinical analysis and many other fields, where the qualitative and quantitative characterization of complex organic, bioorganic and organometallic mixtures is needed. Beginners and moderately experienced LC-MS users may be confused by the number of different LC-MS systems on the market, therefore an actual overview of mass spectrometers designed for the LC-MS configuration and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) from main manufacturers is compiled here together with an independent assessment of their advantages and limitations. Current trends in terms of mass analyzers, ionization techniques, fast LC-MS, LC-MALDI-MS, ion mobility spectrometry used in LC-MS, quantitation issues specific to MS and emerging mass spectrometric approaches complementary to LC-MS are discussed as well.


Journal of Chromatography A | 2008

Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry

Miroslav Lísa; Michal Holčapek

Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.


Journal of Chromatography A | 2010

Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules

Michal Holčapek; Robert Jirásko; Miroslav Lísa

This review summarizes the basic rules for the interpretation of atmospheric pressure ionization (API) mass spectra of small molecules written with the style primarily intended for beginners and low-experienced researchers with the mass spectra interpretation. The first and basic step in any interpretation of mass spectra is always the determination of molecular weight, which is relatively easy in case of soft ionization techniques due to the limited extend of fragmentation and the prevailing presence of (de)protonated molecules in the full scan mass spectra. These [M+H](+) and [M-H](-) ions are often accompanied by low abundant molecular adducts, which can be used as the supplementary information for the unambiguous determination of molecular weights. In certain cases, adduct ions may dominate the spectra. The subsequent interpretation of full scan and tandem mass spectra is more complicated due to a high number of possible functional groups, structural subunits and their combinations resulting in numerous competitive fragmentation pathways. Typical neutral losses and the effect of individual functional groups on the fragmentation are discussed in detail and illustrated with selected examples. Modern mass analyzers have powerful features for the structural elucidation, for example high resolving power, high mass accuracy, multistage tandem mass spectrometry, dedicated softwares for the interpretation of mass spectra and prediction of their fragmentation. Background information on differences among individual ionization techniques suitable for the HPLC-MS coupling and basic types of mass analyzers with consequences for the data interpretation is briefly discussed as well. Selected examples illustrate that the right optimization of chromatographic separation and the use of other than mass spectrometric detectors can bring valuable complementary information.


Journal of Chromatography A | 2011

Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography–mass spectrometry

Miroslav Lísa; Eva Cífková; Michal Holčapek

Lipids are important components in all biological tissues having many essential roles associated with the proper function of the organism. Their analysis in the biological tissues and body fluids is a challenging task due to the extreme sample complexity of polar lipids and to their amphiphilic character. In this work, we describe a new method for the characterization of the lipid composition in various tissues, using off-line two-dimensional coupling of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) high-performance liquid chromatography coupled to electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectrometry. In the first dimension the total lipid extracts are fractioned using HILIC into individual lipid classes. In total, 19 lipid classes (+3 regioisomeric pairs) that cover a wide range of polarities are separated in one analytical run, which is the highest number of analyzed lipid classes reported so far. The lysophospholipid regioisomers are also separated in HILIC mode followed by the identification based on the characteristic ESI mass spectra. The collected fractions of the various lipid classes are further separated in the RP mode, which offers an excellent resolution of the individual lipid species. Their ESI or APCI mass spectra give correct information on the fatty acid composition and on the individual regioisomeric positions on the glycerol skeleton. Off-line coupling of both modes enables the comprehensive analysis of plant and animal samples as illustrated on the analysis of egg yolk, soya and porcine brain tissues.


Analytical Chemistry | 2009

Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards.

Miroslav Lísa; Hana Velínská; Michal Holčapek

Silver-ion normal-phase high-performance liquid chromatography (HPLC) provides a superior separation selectivity for lipids differing in the number and position of double bonds in fatty acid chains including the resolution of triacylglycerol (TG) regioisomers under optimized conditions. Our silver-ion HPLC method is based on the coupling of three columns in the total length of 75 cm and a new mobile phase gradient consisting of hexane-acetonitrile-2-propanol which provides better resolution and also reproducibility in comparison to previously used mobile phases. In our work, the chemical interesterification (randomization) of single-acid TG standards is used for the generation of regioisomeric series of TGs, because it provides a random distribution of fatty acids in TGs at well-defined concentration ratios. The baseline separation of regioisomeric TG pairs containing up to three double bonds and the partial separation of TG regioisomers with four to seven double bonds are reported for the first time. Our silver-ion high-performance liquid chromatography/mass spectrometry (HPLC/MS) method is applied for the regioisomeric characterization of complex samples of plant oils and animal fat, where the results clearly demonstrate different preference of sn-2 occupation in plants (mainly unsaturated fatty acids) versus animal fat (mainly saturated fatty acids).


Analytical Chemistry | 2015

High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography–Mass Spectrometry

Miroslav Lísa; Michal Holčapek

New analytical approach for high-throughput and comprehensive lipidomic analysis of biological samples using ultrahigh-performance supercritical fluid chromatography (UHPSFC) with electrospray ionization-mass spectrometry (ESI-MS) is presented in this work as an alternative approach to established shotgun MS or high-performance liquid chromatography-MS. The lipid class separation is performed by UHPSFC method based on 1.7 μm particle-bridged ethylene hybrid silica column with a gradient of methanol-water-ammonium acetate mixture as a modifier. All parameters of UHPSFC conditions are carefully optimized and their influence on the chromatographic behavior of lipids is discussed. The final UHPSFC/ESI-MS method enables a fast separation of 30 nonpolar and polar lipid classes within 6 min analysis covering 6 main lipid categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. Individual lipid species within lipid classes are identified based on positive and negative-ion full-scan and tandem mass spectra measured with high mass accuracy and high resolving power. Developed UHPSFC/ESI-MS method is applied for the analysis of porcine brain extract as a complex lipidomic sample, where 24 lipid classes containing 436 lipid species are identified. The method is validated for the quantitative analysis of lipid species in biological tissues using internal standards for each lipid class. This high-throughput, comprehensive and accurate UHPSFC/ESI-MS method is suitable for the lipidomic analysis of large sample sets in the clinical research.


Journal of Agricultural and Food Chemistry | 2009

Statistical Evaluation of Triacylglycerol Composition in Plant Oils Based on High-Performance Liquid Chromatography−Atmospheric Pressure Chemical Ionization Mass Spectrometry Data

Miroslav Lísa; Michal Holčapek; Michal Boháč

The statistical evaluation of triacylglycerol profiles in plant oils based on high-performance liquid chromatography mass spectrometry (HPLC/MS) analysis enables the differentiation of various plant oils on the basis of the multidimensional data matrix. A data set of 93 oil samples from 60 varieties of plants composed from 355 triacylglycerols is evaluated using the principal component analysis. Analyzed samples are resolved in the principal component analysis plot, and similarities among some types of plant oils are visualized by the formation of clusters. The authentication of plant oils is tested with model samples of olive oil adulterated with sunflower oil at different concentration levels. Our HPLC/MS method using the statistical multivariate data analysis of a large data matrix enables a clear identification of adulterated olive oils already from 1% of added sunflower oil as an adulterant.


Journal of Chromatography A | 2010

Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: Comparison of five different mass analyzers

Michal Holčapek; Hana Dvořáková; Miroslav Lísa; Ana Maria Jimenez Giron; Pat Sandra; Josef Cvačka

Silver-ion high-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is used for the regioisomeric analysis of triacylglycerols (TGs). Standard mixtures of TG regioisomers are prepared by the randomization reaction from 8 mono-acid TG standards (tripalmitin, tristearin, triarachidin, triolein, trielaidin, trilinolein, trilinolenin and tri-gamma-linolenin). In total, 32 different regioisomeric doublets and 11 triplets are synthesized, separated by silver-ion HPLC using three serial coupled chromatographic columns giving a total length of 75cm. The retention of TGs increases strongly with the double bond (DB) number and slightly for regioisomers having more DBs in sn-1/3 positions. DB positional isomers (linolenic vs. γ-linolenic acids) are also separated and their reverse retention order in two different mobile phases is demonstrated. APCI mass spectra of all separated regioisomers are measured on five different mass spectrometers: single quadrupole LC/MSD (Agilent Technologies), triple quadrupole API 3000 (AB SCIEX), ion trap Esquire 3000 (Bruker Daltonics), quadrupole time-of-flight micrOTOF-Q (Bruker Daltonics) and LTQ Orbitrap XL (Thermo Fisher Scientific). The effect of different types of mass analyzer on the ratio of [M+H-R(i)COOH](+) fragment ions in APCI mass spectra is lower compared to the effect of the number of DBs, their position on the acyl chain and the regiospecific distribution of acyl chains on the glycerol skeleton. Presented data on [M+H-R(i)COOH](+) ratios measured on five different mass analyzers can be used for the direct regioisomeric determination in natural and biological samples.


Analytical Chemistry | 2012

Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach.

Eva Cífková; Michal Holčapek; Miroslav Lísa; Magdaléna Ovčačíková; Antonín Lyčka; Frederic Lynen; Pat Sandra

The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.


Journal of Chromatography A | 2011

Characterization of fatty acid and triacylglycerol composition in animal fats using silver-ion and non-aqueous reversed-phase high-performance liquid chromatography/mass spectrometry and gas chromatography/flame ionization detection

Miroslav Lísa; Kateřina Netušilová; Lukáš Franěk; Hana Dvořáková; Vladimír Vrkoslav; Michal Holčapek

Fatty acid (FA) and triacylglycerol (TG) composition of natural oils and fats intake in the diet has a strong influence on the human health and chronic diseases. In this work, non-aqueous reversed-phase (NARP) and silver-ion high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection and gas chromatography with flame-ionization detection (GC/FID) and mass spectrometry detection are used for the characterization of FA and TG composition in complex samples of animal fats from fallow deer, red deer, sheep, moufflon, wild boar, cock, duck and rabbit. The FA composition of samples is determined based on the GC/FID analysis of FA methyl esters. In total, 81 FAs of different acyl chain length, double bond (DB) number, branched/linear, cis-/trans- and DB positional isomers are identified. TGs in animal fats contain mainly monounsaturated and saturated FAs. High amounts of branched and trans-FAs are observed in the samples of ruminants. In NARP mode, individual TG species are separated including the separation of trans- and branched TGs. Silver-ion mode provides the separation of TG regioisomers, which enables the determination of their ratios. Great differences in the preference of unsaturated and saturated FAs in the sn-2 position on the glycerol skeleton are observed among individual animal fats. Unsaturated FAs are preferentially occupied in the sn-2 position in all animal samples except for wild boar with the strong preference of saturated FAs in the sn-2 position.

Collaboration


Dive into the Miroslav Lísa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milan Nobilis

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Květina

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge