Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva-Maria Krämer-Albers is active.

Publication


Featured researches published by Eva-Maria Krämer-Albers.


Journal of extracellular vesicles | 2015

Biological properties of extracellular vesicles and their physiological functions.

María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.


PLOS Biology | 2012

Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko

Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.


PLOS Biology | 2013

Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.

Carsten Frühbeis; Dominik Fröhlich; Wen Ping Kuo; Jesa Amphornrat; Sebastian Thilemann; Aiman S. Saab; Frank Kirchhoff; Wiebke Möbius; Sandra Goebbels; Klaus-Armin Nave; Anja Schneider; Mikael Simons; Matthias Klugmann; Jacqueline Trotter; Eva-Maria Krämer-Albers

Neuronal activity provokes myelinating oligodendrocytes to release exosomes by stimulation of ionotropic glutamate receptors, and that once released, these vesicles are internalized by neurons conveying neuroprotection.


Proteomics Clinical Applications | 2007

Oligodendrocytes secrete exosomes containing major myelin and stress‐protective proteins: Trophic support for axons?

Eva-Maria Krämer-Albers; Niko Bretz; Stefan Tenzer; Christine Winterstein; Wiebke Möbius; Hendrik Berger; Klaus-Armin Nave; Hansjörg Schild; Jacqueline Trotter

Oligodendrocytes synthesize the CNS myelin sheath by enwrapping axonal segments with elongations of their plasma membrane. Spatial and temporal control of membrane traffic is a prerequisite for proper myelin formation. The major myelin proteolipid protein (PLP) accumulates in late endosomal storage compartments and multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in the release of the intralumenal vesicles, termed exosomes, into the extracellular space. Here, we show that cultured oligodendrocytes secrete exosomes carrying major amounts of PLP and 2′3′‐cyclic‐nucleotide‐phosphodiesterase (CNP). These exosomes migrated at the characteristic density of 1.10−1.14 g/mL in sucrose density gradients. Treatment of primary oligodendrocytes with the calcium‐ionophore ionomycin markedly increased the release of PLP‐containing exosomes, indicating that oligodendroglial exosome secretion is regulated by cytosolic calcium levels. A proteomic analysis of the exosomal fraction isolated by sucrose density centrifugation revealed in addition to PLP and CNP, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) as constituents of oligodendroglial exosomes, together with a striking group of proteins with proposed functions in the relief of cell stress. Oligodendroglial exosome secretion may contribute to balanced production of myelin proteins and lipids, but in addition exosomes may embody a signaling moiety involved in glia‐mediated trophic support to axons.


Frontiers in Cellular Neuroscience | 2013

Extracellular vesicles as mediators of neuron-glia communication.

Carsten Frühbeis; Dominik Fröhlich; Wen Ping Kuo; Eva-Maria Krämer-Albers

In the nervous system, glia cells maintain homeostasis, synthesize myelin, provide metabolic support, and participate in immune defense. The communication between glia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), such as exosomes and shedding microvesicles, are key players in intercellular signaling. The cells of the nervous system secrete EVs, which potentially carry protein and RNA cargo from one cell to another. After delivery, the cargo has the ability to modify the target cell phenotype. Here, we review the recent advances in understanding the role of EV secretion by astrocytes, microglia, and oligodendrocytes in the central nervous system. Current work has demonstrated that oligodendrocytes transfer exosomes to neurons as a result of neurotransmitter signaling suggesting that these vesicles may mediate glial support of neurons.


Frontiers in Physiology | 2012

Emerging Roles of Exosomes in Neuron–Glia Communication

Carsten Frühbeis; Dominik Fröhlich; Eva-Maria Krämer-Albers

Brain function depends on coordinated interactions between neurons and glial cells. Recent evidence indicates that these cells release endosome-derived microvesicles termed exosomes, which are 50–100 nm in size and carry specific protein and RNA cargo. Exosomes can interact with neighboring cells raising the concept that exosomes may mediate signaling between brain cells and facilitate the delivery of bioactive molecules. Oligodendrocytes myelinate axons and furthermore maintain axonal integrity by an yet uncharacterized pathway of trophic support. Here, we highlight the role of exosomes in nervous system cell communication with particular focus on exosomes released by oligodendrocytes and their potential implications in axon–glia interaction and myelin disease, such as multiple sclerosis. These secreted vesicles may contribute to eliminate overproduced myelin membrane or to transfer antigens facilitating immune surveillance of the brain. Furthermore, there is emerging evidence that exosomes participate in axon–glia communication.


Journal of Cell Biology | 2008

Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2–dependent RNA granules

Robin White; Constantin Gonsior; Eva-Maria Krämer-Albers; Nadine Stöhr; Stefan Hüttelmaier; Jacqueline Trotter

Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon–glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE–containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon–glia contact and myelin deposition.


The Journal of Neuroscience | 2014

Emerging Roles of Extracellular Vesicles in the Nervous System

Lawrence Rajendran; Bali J; Maureen M. Barr; Felipe A. Court; Eva-Maria Krämer-Albers; Picou F; Graça Raposo; van der Vos Ke; van Niel G; Jianfeng Wang; Xandra O. Breakefield

Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimers and Parkinsons diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.


Cellular and Molecular Life Sciences | 2011

From axon–glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase

Eva-Maria Krämer-Albers; Robin White

Central nervous system myelination requires recognition and signalling processes between neuronal axons and oligodendrocytes. Complex cellular rearrangements occur in myelination-competent oligodendrocytes requiring spatio-temporal control mechanisms. Although the molecular repertoire is becoming increasingly transparent, the signalling mechanisms governing myelination initiation are only poorly understood. The non-receptor tyrosine kinase Fyn has been implicated in axon–glial signal transduction and in several cellular processes required for oligodendrocyte maturation and myelination. Here, we review oligodendroglial Fyn signalling and discuss the role of Fyn in axon–glia interaction mediating myelination.


The Journal of Neuroscience | 2009

Cholesterol Regulates the Endoplasmic Reticulum Exit of the Major Membrane Protein P0 Required for Peripheral Myelin Compaction

Gesine Saher; Susanne Quintes; Wiebke Möbius; Michael C. Wehr; Eva-Maria Krämer-Albers; Britta Brügger; Klaus-Armin Nave

Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

Collaboration


Dive into the Eva-Maria Krämer-Albers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Klugmann

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge