Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wiebke Möbius is active.

Publication


Featured researches published by Wiebke Möbius.


Journal of Biological Chemistry | 2003

Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation.

Richard Wubbolts; Rachel S. Leckie; Peter T. M. Veenhuizen; Guenter Schwarzmann; Wiebke Möbius; Joerg Hoernschemeyer; Jan-Willem Slot; Hans J. Geuze; Willem Stoorvogel

Exosomes are 60–100-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular body fusion with the plasma membrane. Here we determined the protein and lipid compositions of highly purified human B cell-derived exosomes. Mass spectrometric analysis indicated the abundant presence of major histocompatibility complex (MHC) class I and class II, heat shock cognate 70, heat shock protein 90, integrin α4, CD45, moesin, tubulin (α and β), actin, Giα2, and a multitude of other proteins. An α4-integrin may direct B cell-derived exosomes to follicular dendritic cells, which were described previously as potential target cells. Clathrin, heat shock cognate 70, and heat shock protein 90 may be involved in protein sorting at multivesicular bodies. Exosomes were also enriched in cholesterol, sphingomyelin, and ganglioside GM3, lipids that are typically enriched in detergent-resistant membranes. Most exosome-associated proteins, including MHC class II and tetraspanins, were insoluble in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-containing buffers. Multivesicular body-linked MHC class II was also resistant to CHAPS whereas plasma membrane-associated MHC class II was solubilized readily. Together, these data suggest that recruitment of membrane proteins from the limiting membranes into the internal vesicles of multivesicular bodies may involve their incorporation into tetraspanin-containing detergent-resistant membrane domains.


Nature | 2012

Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.

Ursula Fünfschilling; Lotti Marianna Supplie; Don J. Mahad; Susann Boretius; Aiman S. Saab; Julia M. Edgar; Bastian G. Brinkmann; Celia M. Kassmann; Iva D. Tzvetanova; Wiebke Möbius; Francisca Diaz; Dies Meijer; Ueli Suter; Bernd Hamprecht; Michael W. Sereda; Carlos T. Moraes; Jens Frahm; Sandra Goebbels; Klaus-Armin Nave

Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.


Nature Neuroscience | 2005

High cholesterol level is essential for myelin membrane growth

Gesine Saher; Britta Brügger; Corinna Lappe-Siefke; Wiebke Möbius; Ryu-ichi Tozawa; Michael C. Wehr; Felix Wieland; Shun Ishibashi; Klaus-Armin Nave

Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.


Current Biology | 2003

Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes

Markus Grebe; Jian Xu; Wiebke Möbius; Takashi Ueda; Akihiko Nakano; Hans J. Geuze; Martin B. Rook; Ben Scheres

BACKGROUND In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.


Traffic | 2003

Recycling Compartments and the Internal Vesicles of Multivesicular Bodies Harbor Most of the Cholesterol Found in the Endocytic Pathway

Wiebke Möbius; E.G. van Donselaar; Yoshiko Ohno-Iwashita; Yukiko Shimada; Harry F. G. Heijnen; Jan-Willem Slot; Hans J. Geuze

We employed our recently developed immuno‐electron microscopic method (W. Möbius, Y. Ohno‐Iwashita, E. G. van Donselaar, V. M. Oorschot, Y. Shimada, T. Fujimoto, H. F. Heijnen, H. J. Geuze and J. W. Slot, J Histochem Cytochem 2002; 50: 43–55) to analyze the distribution of cholesterol in the endocytic pathway of human B lymphocytes. We could distinguish 6 categories of endocytic compartments on the basis of morphology, BSA gold uptake kinetics and organelle marker analysis. Of all cholesterol detected in the endocytic pathway, we found 20% in the recycling tubulo‐vesicles and 63% present in two types of multivesicular bodies. In the multivesicular bodies, most of the cholesterol was contained in the internal membrane vesicles, the precursors of exosomes secreted by B cells. Cholesterol was almost absent from lysosomes, that contained the bulk of the lipid bis(monoacylglycero)phosphate, also termed lysobisphosphatidic acid. Thus, cholesterol displays a highly differential distribution in the various membrane domains of the endocytic pathway.


PLOS Biology | 2013

Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.

Carsten Frühbeis; Dominik Fröhlich; Wen Ping Kuo; Jesa Amphornrat; Sebastian Thilemann; Aiman S. Saab; Frank Kirchhoff; Wiebke Möbius; Sandra Goebbels; Klaus-Armin Nave; Anja Schneider; Mikael Simons; Matthias Klugmann; Jacqueline Trotter; Eva-Maria Krämer-Albers

Neuronal activity provokes myelinating oligodendrocytes to release exosomes by stimulation of ionotropic glutamate receptors, and that once released, these vesicles are internalized by neurons conveying neuroprotection.


Proteomics Clinical Applications | 2007

Oligodendrocytes secrete exosomes containing major myelin and stress‐protective proteins: Trophic support for axons?

Eva-Maria Krämer-Albers; Niko Bretz; Stefan Tenzer; Christine Winterstein; Wiebke Möbius; Hendrik Berger; Klaus-Armin Nave; Hansjörg Schild; Jacqueline Trotter

Oligodendrocytes synthesize the CNS myelin sheath by enwrapping axonal segments with elongations of their plasma membrane. Spatial and temporal control of membrane traffic is a prerequisite for proper myelin formation. The major myelin proteolipid protein (PLP) accumulates in late endosomal storage compartments and multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in the release of the intralumenal vesicles, termed exosomes, into the extracellular space. Here, we show that cultured oligodendrocytes secrete exosomes carrying major amounts of PLP and 2′3′‐cyclic‐nucleotide‐phosphodiesterase (CNP). These exosomes migrated at the characteristic density of 1.10−1.14 g/mL in sucrose density gradients. Treatment of primary oligodendrocytes with the calcium‐ionophore ionomycin markedly increased the release of PLP‐containing exosomes, indicating that oligodendroglial exosome secretion is regulated by cytosolic calcium levels. A proteomic analysis of the exosomal fraction isolated by sucrose density centrifugation revealed in addition to PLP and CNP, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) as constituents of oligodendroglial exosomes, together with a striking group of proteins with proposed functions in the relief of cell stress. Oligodendroglial exosome secretion may contribute to balanced production of myelin proteins and lipids, but in addition exosomes may embody a signaling moiety involved in glia‐mediated trophic support to axons.


The Journal of Neuroscience | 2007

Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin

Hauke B. Werner; Katja Kuhlmann; Siming Shen; Marina Uecker; Anke Schardt; Kalina Dimova; Foteini Orfaniotou; Ajit S. Dhaunchak; Bastian G. Brinkmann; Wiebke Möbius; Lenny Guarente; Patrizia Casaccia-Bonnefil; Olaf Jahn; Klaus-Armin Nave

Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLPnull myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLPnull mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLPnull was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD+/NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes.


The Journal of Neuroscience | 2010

Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination.

Sandra Goebbels; Jan H. Oltrogge; Robert Kemper; Ingo Heilmann; Ingo Bormuth; Susanne Wolfer; Sven P. Wichert; Wiebke Möbius; Xin Liu; Corinna Lappe-Siefke; Moritz J. Rossner; Matthias Groszer; Ueli Suter; Jens Frahm; Susann Boretius; Klaus-Armin Nave

In the developing nervous system, constitutive activation of the AKT/mTOR (mammalian target of rapamycin) pathway in myelinating glial cells is associated with hypermyelination of the brain, but is reportedly insufficient to drive myelination by Schwann cells. We have hypothesized that it requires additional mechanisms downstream of NRG1/ErbB signaling to trigger myelination in the peripheral nervous system. Here, we demonstrate that elevated levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) have developmental effects on both oligodendrocytes and Schwann cells. By generating conditional mouse mutants, we found that Pten-deficient Schwann cells are enhanced in number and can sort and myelinate axons with calibers well below 1 μm. Unexpectedly, mutant glial cells also spirally enwrap C-fiber axons within Remak bundles and even collagen fibrils, which lack any membrane surface. Importantly, PIP3-dependent hypermyelination of central axons, which is observed when targeting Pten in oligodendrocytes, can also be induced after tamoxifen-mediated Cre recombination in adult mice. We conclude that it requires distinct PIP3 effector mechanisms to trigger axonal wrapping. That myelin synthesis is not restricted to early development but can occur later in life is relevant to developmental disorders and myelin disease.


Journal of Histochemistry and Cytochemistry | 2002

Immunoelectron Microscopic Localization of Cholesterol Using Biotinylated and Non-cytolytic Perfringolysin O:

Wiebke Möbius; Yoshiko Ohno-Iwashita; Elly van Donselaar; Viola Oorschot; Yukiko Shimada; Toyoshi Fujimoto; Harry F. G. Heijnen; Hans J. Geuze; Jan W. Slot

We used a proteolytically modified and biotinylated derivative of the cholesterol-binding θ-toxin (perfringolysin O) to localize cholesterol-rich membranes in cryosections of cultured human lymphoblastoid cells (RN) by electron microscopy. We developed a fixation and immunolabeling procedure to improve the preservation of membranes and minimize the extraction and dislocalization of cholesterol on thin sections. We also labeled the surface of living cells and applied high-pressure freezing and subsequent fixation of cryosections during thawing. Cholesterol labeling was found at the plasma membrane, with strongest labeling on filopodium-like processes. Strong labeling was also associated with internal vesicles of multivesicular bodies (MVBs) and similar vesicles at the cell surface after secretion (exosomes). Tubulovesicular elements in close vicinity of endosomes and the Golgi complex were often positive as well, but the surrounding membrane of MVBs and the Golgi cisternae appeared mostly negative. Treatment of cells with methyl-β-cyclodextrin completely abolished the labeling for cholesterol. Our results show that the θ-toxin derivative, when used in combination with improved fixation and high-pressure freezing, represents a useful tool for the localization of membrane cholesterol in ultrathin cryosections.

Collaboration


Dive into the Wiebke Möbius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Schneider

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge