Eva Ramon
Polytechnic University of Catalonia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Ramon.
Journal of Biological Chemistry | 2003
Luis J. del Valle; Eva Ramon; Xavier Cañavate; Paulo Dias; Pere Garriga
Zinc is present at high concentrations in the photoreceptor cells of the retina where it has been proposed to play a role in the visual phototransduction process. In order to obtain more information about this role, the study of the effect of zinc on several properties of the visual photoreceptor rhodopsin has been investigated. A specific effect of Zn2+ on the thermal stability of rhodopsin, obtained from bovine retinas and solubilized in dodecyl maltoside detergent, in the dark is reported. The thermal stability of rhodopsin in its ground state (dark state) is clearly reduced with increasing Zn2+ concentrations (0–50 μmZn2+). The thermal bleaching process is accelerated in the presence of Zn2+ with k rate constants, at 55 °C, of 0.028 ± 0.002 min−1 (0 μmZn2+) and 0.056 ± 0.003 min−1 (50 μm Zn2+), corresponding tot 1 2 values of 24.4 ± 1.6 min and 11.8 ± 0.1 min, respectively. Thermodynamic parameters derived from Arrhenius plots show a significant E a increase at 50 μm Zn2+ for the process, with ΔG ‡ decrease and increase in ΔH ‡ and ΔS ‡ possibly reflecting conformational rearrangements and reordering of water molecules. The stability of the metarhodopsin II intermediate is also decreased and changes in the metarhodopsin II decay pathway are also detected. The extent of rhodopsin regeneration in vitro is also reduced by zinc. These effects, specific for zinc, are also seen for rhodopsin in native disc membranes, and may be relevant to the suggested role of Zn2+ in normal and pathological retinal function.
Journal of Biological Chemistry | 2011
Darwin Toledo; Eva Ramon; Mònica Aguilà; Arnau Cordomí; Juan J. Perez; Hugo F. Mendes; Michael E. Cheetham; Pere Garriga
Background: Mutations at Gly-90 in rhodopsin cause two different phenotypes: retinitis pigmentosa and congenital night blindness. Results: G90V retinitis pigmentosa mutant shows constitutive activity and very low thermal stability in the dark state. Conclusion: Low conformational stability can trigger retinitis pigmentosa associated with rhodopsin mutations. Significance: Retinoids can help to stabilize the conformation of retinitis pigmentosa mutants. Two different mutations at Gly-90 in the second transmembrane helix of the photoreceptor protein rhodopsin have been proposed to lead to different phenotypes. G90D has been classically associated with congenital night blindness, whereas the newly reported G90V substitution was linked to a retinitis pigmentosa phenotype. Here, we used Val/Asp replacements of the native Gly at position 90 to unravel the structure/function divergences caused by these mutations and the potential molecular mechanisms of inherited retinal disease. The G90V and G90D mutants have a similar conformation around the Schiff base linkage region in the dark state and same regeneration kinetics with 11-cis-retinal, but G90V has dramatically reduced thermal stability when compared with the G90D mutant rhodopsin. The G90V mutant also shows, like G90D, an altered photobleaching pattern and capacity to activate Gt in the opsin state. Furthermore, the regeneration of the G90V mutant with 9-cis-retinal was improved, achieving the same A280/A500 as wild type isorhodopsin. Hydroxylamine resistance was also recovered, indicating a compact structure around the Schiff base linkage, and the thermal stability was substantially improved when compared with the 11-cis-regenerated mutant. These results support the role of thermal instability and/or abnormal photoproduct formation in eliciting a retinitis pigmentosa phenotype. The improved stability and more compact structure of the G90V mutant when it was regenerated with 9-cis-retinal brings about the possibility that this isomer or other modified retinoid analogues might be used in potential treatment strategies for mutants showing the same structural features.
Journal of Biomolecular Structure & Dynamics | 2008
Arnau Cordomí; Eva Ramon; Pere Garriga; Juan J. Perez
Abstract The present work reports on a structural analysis carried out through different computer simulations of a set of rhodopsin mutants with differential functional features in regard to the wild type. Most of these mutants, whose experimental features had previously been reported [Ramon et al. J Biol Chem 282, 14272–14282 (2007)], were designed to perturb a network of electrostatic interactions located at the cytoplasmic sides of transmembrane helices 3 and 6. Geometric and energetic features derived from the detailed analysis of a series of molecular dynamics simulations of the different rhodopsin mutants, involving positions 134(3.49), 247(6.30), and 251(6.34), suggest that the protein structure is sensitive to these mutations through the local changes induced that extend further to the secondary structure of neighboring helices and, ultimately, to the packing of the helical bundle. Overall, the results obtained highlight the complexity of the analyzed network of electrostatic interactions where the effect of each mutation on protein structure can produce rather specific features.
Vision Research | 2003
Eva Ramon; Jordi Marron; Luis J. del Valle; Laia Bosch; Anna Andrés; Joan Manyosa; Pere Garriga
Detergent-solubilized bovine rhodopsin produces mixed detergent/lipid/protein micelles. The effect of dodecyl maltoside detergent on the thermal stability of dark-state rhodopsin, and upon formation of the different intermediates after rhodopsin photobleaching (metarhodopsin II and metarhodopsin III), and upon transducin activation has been studied. No significant effect is observed for the thermal stability of dark-state rhodopsin in the range of detergent concentrations studied, but a decrease in the stability of metarhodopsin II and an increase in metarhodopsin III formation is observed with decreasing detergent concentrations. The transducin activation process is also affected by the presence of detergent indicating that this process is dependent on the lipid micro-environment and membrane fluidity, and this stresses the importance of the native lipid environment in rhodopsin normal function.
Journal of Biological Chemistry | 2007
Eva Ramon; Arnau Cordomí; Laia Bosch; Eugeni Yu. Zernii; Ivan I. Senin; Joan Manyosa; Pavel P. Philippov; Juan J. Perez; Pere Garriga
The cytoplasmic sides of transmembrane helices 3 and 6 of G-protein-coupled receptors are connected by a network of ionic interactions that play an important role in maintaining its inactive conformation. To investigate the role of such a network in rhodopsin structure and function, we have constructed single mutants at position 134 in helix 3 and at positions 247 and 251 in helix 6, as well as combinations of these to obtain double mutants involving the two helices. These mutants have been expressed in COS-1 cells, immunopurified using the rho-1D4 antibody, and studied by UV-visible spectrophotometry. Most of the single mutations did not affect chromophore formation, but double mutants, especially those involving the T251K mutant, resulted in low yield of protein and impaired 11-cis-retinal binding. Single mutants E134Q, E247Q, and E247A showed the ability to activate transducin in the dark, and E134Q and E247A enhanced activation upon illumination, with regard to wild-type rhodopsin. Mutations E247A and T251A (in E134Q/E247A and E134Q/T251A double mutants) resulted in enhanced activation compared with the single E134Q mutant in the dark. A role for Thr251 in this network is proposed for the first time in rhodopsin. As a result of these mutations, alterations in the hydrogen bond interactions between the amino acid side chains at the cytoplasmic region of transmembrane helices 3 and 6 have been observed using molecular dynamics simulations. Our combined experimental and modeling results provide new insights into the details of the structural determinants of the conformational change ensuing photoactivation of rhodopsin.
Chemistry & Biology | 2014
Sundaramoorthy Srinivasan; Eva Ramon; Arnau Cordomí; Pere Garriga
11-cis-retinal acts as an inverse agonist stabilizing the inactive conformation of visual pigments, and upon photoactivation, it isomerizes to all-trans-retinal, initiating signal transduction. We have analyzed opsin regeneration with retinal analogs for rhodopsin and red cone opsin. We find differential binding of the analogs to the receptors after photobleaching and a dependence of the binding kinetics on the oligomerization state of the protein. The results outline the sensitivity of retinal entry to the binding pocket of visual receptors to the specific conformation adopted by the receptor and by the molecular architecture defined by specific amino acids in the binding pocket and the retinal entry site, as well as the topology of the retinal analog. Overall, our findings highlight the specificity of the ligand-opsin interactions, a feature that can be shared by other G-protein-coupled receptors.
ChemBioChem | 2013
Maria Jesús Sánchez‐Martín; Eva Ramon; Juan Torrent-Burgués; Pere Garriga
Rhodopsin is the photoreceptor located in the rod cells of the retina. It has seven transmembrane helices and is a prototypic member of the G protein‐coupled receptor superfamily. The structures and functions of these receptors are clearly affected by the lipid composition of the cell membrane, and their study in a purified recombinant form is usually performed in detergent solution. There is a need to study these receptors in a physiologically relevant environment because the lipid environment is known to have an important effect on their function. In this work, rhodopsin reconstituted in docosahexaenoic acid (DHA) liposomes is shown to have more thermal stability than when it is solubilised with the neutral detergent dodecyl maltoside. Moreover, the specific interaction between rhodopsin and DHA was followed by means of Langmuir experiments with insertion of rhodopsin into lipid monolayers; this showed high affinity for the lipid–receptor interaction. Furthermore, fluorescence spectroscopy measurements indicate that the conformation of opsin obtained after photobleaching is preserved in DHA‐containing liposomes, thereby allowing retinal to re‐enter the binding pocket even long after bleaching. Overall, our results demonstrate that liposomes of this specific lipid provide a more stable environment for ground‐state inactive rhodopsin in the dark, than dodecyl maltoside detergent, and that this lipid can also preserve the native correctly folded ligand‐free opsin conformation obtained after illumination. This strategy will be used in further studies on mutations of rhodopsin associated with congenital retinopathies.
Biochimica et Biophysica Acta | 2015
Mercè Tena-Campos; Eva Ramon; Dasiel O. Borroto-Escuela; Kjell Fuxe; Pere Garriga
GPR39 is a class A G protein-coupled receptor involved in zinc binding and glucose homeostasis regulation, among other physiological processes. GPR39 was originally thought to be the receptor for obestatin peptide but this view has been challenged. However, activation of this receptor by zinc has been clearly established. Recent studies suggest that low GPR39 expression, due to deficient zinc levels, is involved in major depressive disorder. We have previously reported that zinc can alter receptor-receptor interactions and favor specific receptor interactions. In order to unravel the effect of zinc on specific G protein-coupled receptor association processes, we have performed FRET and co-immunopurification studies with GPR39 and 5-HT1A and GalR1 which have been shown to dimerize. Our results suggest that zinc can modulate the formation of specific 5-HT1A-GPR39 and GalR1-5-HT1A-GPR39 heteroreceptor complexes under our experimental conditions. We have analyzed the differences in signaling between the mono-homomeric receptors 5-HT1A, GalR1 and GPR39 and the heteroreceptor complexes between them Our results show that the GPR39-5-HT1A heterocomplex has additive functionalities when compared to the monomeric-homomeric receptors upon receptor activation. In addition, the heterocomplex including also GalR1 shows a different behavior, upon exposure to the same agonists. Furthermore, these processes appear to be regulated by zinc. These findings provide a rationale for the antidepressive effect widely described for zinc because pro-depressive heterocomplexes are predominant at low zinc concentration levels.
Journal of Biological Chemistry | 2014
Eva Ramon; Arnau Cordomí; Mònica Aguilà; Sundaramoorthy Srinivasan; Xiaoyun Dong; Anthony T. Moore; Andrew R. Webster; Michael E. Cheetham; Pere Garriga
Background: Two new rhodopsin mutations associated with the rare form sector retinitis pigmentosa (RP) have been found. Results: Characterization of both rhodopsin mutant proteins shows different progression correlating with a different behavior of rhodopsin upon light exposure. Conclusion: Light plays an important role in triggering sector RP. Significance: Other mechanisms, in addition to protein misfolding, underlie GPCR dysfunction in pathological processes. Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations.
Cellular and Molecular Life Sciences | 2003
L.J. del Valle; Eva Ramon; Laia Bosch; J. Manyosa; Pere Garriga
The natural ligand of the retinal photoreceptor rhodopsin, 11-cis-retinal, is isomerized to its all-trans configuration as a consequence of light absorption in the first step of the visual phototransduction process. Here we show, by means of difference spectroscopy and high-performance liquid chromatography analysis, that thermal denaturation of rhodopsin induces the same type of isomerization. This effect is likely due to thermally induced conformational rearrangements of amino acid residues in the retinal-binding pocket – possibly implying helical movements – and highlights the tight coupling between 11-cis-retinal and opsin. This effect could have implications in the instability and functional changes seen for certain mutations in rhodopsin associated with retinal disease, and in the stability of the different conformers induced by mutations in other G protein-coupled receptors.