Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pere Garriga is active.

Publication


Featured researches published by Pere Garriga.


Methods in Enzymology | 2013

G Protein–Coupled Receptor Heterodimerization in the Brain

Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Pere Garriga; Francisco Ciruela; Manuel Narváez; Alexander O. Tarakanov; Miklós Palkovits; Luigi F. Agnati; Kjell Fuxe

G protein-coupled receptors (GPCRs) play critical roles in cellular processes and signaling and have been shown to form heteromers with diverge biochemical and/or pharmacological activities that are different from those of the corresponding monomers or homomers. However, despite extensive experimental results supporting the formation of GPCR heteromers in heterologous systems, the existence of such receptor heterocomplexes in the brain remains largely unknown, mostly because of the lack of appropriate methodology. Herein, we describe the in situ proximity ligation assay procedure underlining its high selectivity and sensitivity to image GPCR heteromers with confocal microscopy in brain sections. We describe here how the assay is performed and discuss advantages and disadvantages of this method compared with other available techniques.


Frontiers in Physiology | 2012

Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks.

Kjell Fuxe; Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Zaida Díaz-Cabiale; Alicia Rivera; Luca Ferraro; Sergio Tanganelli; Alexander O. Tarakanov; Pere Garriga; José Ángel Narváez; Francisco Ciruela; Michele Guescini; Luigi F. Agnati

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks.


Journal of Cell Science | 2009

A dual role for EDEM1 in the processing of rod opsin

Maria Kosmaoglou; Naheed Kanuga; Mònica Aguilà; Pere Garriga; Michael E. Cheetham

Mutations in rod opsin, the archetypal G-protein-coupled receptor, cause retinitis pigmentosa. The majority of mutations, e.g. P23H, cause protein misfolding, resulting in ER retention, induction of the unfolded protein response and degradation by ERAD. If misfolded rod opsin escapes degradation, it aggregates and forms intracellular inclusions. Therefore, it is important to identify the chaperones that mediate the folding or degradation of rod opsin. ER degradation enhancing α-mannosidase-like 1 (EDEM1) can enhance the release of terminally misfolded glycoproteins from the calnexin chaperone system. Here, we identify EDEM1 as a novel chaperone of rod opsin. EDEM1 expression promoted the degradation of P23H rod opsin and decreased its aggregation. By contrast, shRNA-mediated knockdown of EDEM1 increased both the amount of P23H rod opsin and its aggregation into inclusions. EDEM1 was detected in rod photoreceptor inner segments and EndoH-sensitive rod opsin co-immunoprecipitated with EDEM1 from retina, suggesting that rod opsin is a physiological EDEM1 client. Unexpectedly, EDEM1 binding to rod opsin was independent of mannose trimming and EDEM1 promoted the cell-surface expression of mutant rod opsin. Collectively, the data suggest that EDEM1 is a chaperone for rod opsin and that expression of EDEM1 can be used to promote correct folding, as well as enhanced degradation, of mutant proteins in the ER to combat protein-misfolding disease.


Human Molecular Genetics | 2014

Hsp90 inhibition protects against inherited retinal degeneration

Mònica Aguilà; Dalila Bevilacqua; Caroline McCulley; Nele Schwarz; Dimitra Athanasiou; Naheed Kanuga; Sergey S. Novoselov; Clemens A. Lange; Robin R. Ali; James W. Bainbridge; Carlos Gias; Peter J. Coffey; Pere Garriga; Michael E. Cheetham

The molecular chaperone Hsp90 is important for the functional maturation of many client proteins, and inhibitors are in clinical trials for multiple indications in cancer. Hsp90 inhibition activates the heat shock response and can improve viability in a cell model of the P23H misfolding mutation in rhodopsin that causes autosomal dominant retinitis pigmentosa (adRP). Here, we show that a single low dose of the Hsp90 inhibitor HSP990 enhanced visual function and delayed photoreceptor degeneration in a P23H transgenic rat model. This was associated with the induction of heat shock protein expression and reduced rhodopsin aggregation. We then investigated the effect of Hsp90 inhibition on a different type of rod opsin mutant, R135L, which is hyperphosphorylated, binds arrestin and disrupts vesicular traffic. Hsp90 inhibition with 17-AAG reduced the intracellular accumulation of R135L and abolished arrestin binding in cells. Hsf-1−/− cells revealed that the effect of 17-AAG on P23H aggregation was dependent on HSF-1, whereas the effect on R135L was HSF-1 independent. Instead, the effect on R135L was mediated by a requirement of Hsp90 for rhodopsin kinase (GRK1) maturation and function. Importantly, Hsp90 inhibition restored R135L rod opsin localization to wild-type (WT) phenotype in vivo in rat retina. Prolonged Hsp90 inhibition with HSP990 in vivo led to a posttranslational reduction in GRK1 and phosphodiesterase (PDE6) protein levels, identifying them as Hsp90 clients. These data suggest that Hsp90 represents a potential therapeutic target for different types of rhodopsin adRP through distinct mechanisms, but also indicate that sustained Hsp90 inhibition might adversely affect visual function.


FEBS Letters | 2002

The eye photoreceptor protein rhodopsin. Structural implications for retinal disease1

Pere Garriga; Joan Manyosa

Rhodopsin is the membrane receptor responsible for photoreception in the vertebrate retina. Its characteristic seven‐transmembrane helical structural motif is today widely recognised as a paradigm in signal transduction. Rhodopsin and the phototransduction system are frequently used as structural and mechanistic models for the G‐protein coupled receptor superfamily. Recent advances in the activation mechanism (as derived from the structural available data) and the implications for normal and pathological – in retinal disorders – visual function will be reviewed.


Frontiers in Endocrinology | 2012

On the existence and function of galanin receptor heteromers in the central nervous system

Kjell Fuxe; Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Alexander O. Tarakanov; Feliciano Calvo; Pere Garriga; Mercé Tena; Manuel Narváez; Carmelo Millón; Concepción Parrado; Francisco Ciruela; Luigi F. Agnati; José Ángel Narváez; Zaida Díaz-Cabiale

Galanin receptor (GalR) subtypes 1–3 linked to central galanin neurons may form heteromers with each other and other types of G protein-coupled receptors in the central nervous system (CNS). These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15) to modulate the function of different types of glia–neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR–5-HT1A heteromers likely exist with antagonistic GalR–5-HT1A receptor–receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1–5-HT1A heteromers in cellular models with trans-inhibition of the protomer signaling. A GalR1–GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15) in the CNS. Furthermore, a GalR1–GalR2–5-HT1A heterotrimer is postulated to explain why only galanin (1-15) but not galanin (1-29) can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR–5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR–NPYY1 receptor interactions in putative GalR–NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1–GalR2 heteromer) appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1–GalR2–NPYY2 heterotrimer. Finally, putative GalR–α2-adrenoreceptor heteromers with antagonistic receptor–receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.


Frontiers in Endocrinology | 2014

Diversity and Bias through Receptor–Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization

Kjell Fuxe; Alexander O. Tarakanov; Wilber Romero Fernandez; Luca Ferraro; Sergio Tanganelli; Małgorzata Filip; Luigi F. Agnati; Pere Garriga; Zaida Díaz-Cabiale; Dasiel O. Borroto-Escuela

Allosteric receptor–receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR–D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R–D1R–D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R–5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A–D2R receptor–receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A–D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor–receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.


Biochemical and Biophysical Research Communications | 2003

Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa.

Anna Andrés; Pere Garriga; Joan Manyosa

Point mutations found in rhodopsin associated with the retinal degenerative disease retinitis pigmentosa have been expressed in mammalian COS-1 cells, purified, and characterised. The mutations characterised-most of them for the first time-have been Met44Thr, Gly114Asp, Arg135Leu, Val137Met, and Pro171Leu in the transmembrane domain; Leu328Pro and Ala346Pro in the C-terminal tail of the cytoplasmic domain; and Gly106Trp in the intradiscal domain. Several of these mutations cause misfolding which results in impaired 11-cis-retinal binding. Two of them, Met44Thr and Val137Met, show spectral and structural features similar to those of wild type rhodopsin (Type I mutants) but significantly increased transducin initial activation rates. We propose that, in the case of these mutants, abnormal functioning resulting in faster activation kinetics could also play a role in retinitis pigmentosa by altering the stoichiometric balance of the different proteins involved in the phototransduction biochemical reactions.


Biochimica et Biophysica Acta | 2002

Calcium-induced decrease of the thermal stability and chaperone activity of α-crystallin

Luis J. del Valle; Cristina Escribano; Juan J. Perez; Pere Garriga

Abstract α-Crystallin, one of the major proteins in the vertebrate eye lens, acts as a molecular chaperone, like the small heat-shock proteins, by protecting other proteins from denaturing under stress or high temperature conditions. α-Crystallin aggregation is involved in lens opacification, and high [Ca2+] has been associated with cataract formation, suggesting a role for this cation in the pathological process. We have investigated the effect of Ca2+ on the thermal stability of α-crystallin by UV and Fourier-transform infrared (FTIR) spectroscopies. In both cases, a Ca2+-induced decrease in the midpoint of the thermal transition is detected. The presence of high [Ca2+] results also in a marked decrease of its chaperone activity in an insulin-aggregation assay. Furthermore, high Ca2+ concentration decreases Cys reactivity towards a sulfhydryl reagent. The results obtained from the spectroscopic analysis, and confirmed by circular dichroism (CD) measurements, indicate that Ca2+ decreases both secondary and tertiary–quaternary structure stability of α-crystallin. This process is accompanied by partial unfolding of the protein and a clear decrease in its chaperone activity. It is concluded that Ca2+ alters the structural stability of α-crystallin, resulting in impaired chaperone function and a lower protective ability towards other lens proteins. Thus, α-crystallin aggregation facilitated by Ca2+ would play a role in the progressive loss of transparency of the eye lens in the cataractogenic process.


Biochimica et Biophysica Acta | 2010

The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization

Dasiel O. Borroto-Escuela; Gloria García-Negredo; Pere Garriga; Kjell Fuxe; Francisco Ciruela

Besides some pharmacological, biochemical and biophysical evidences support the contention that muscarinic acetylcholine receptors can form homo- and heterodimers, the existence of specific M(3) and M(5) muscarinic receptors oligomers in living cells is a new concept. Interestingly, this phenomenon might have relevance in lymphocytic cholinergic function since both T- and B-cells naturally express high levels of these two receptor subtypes. Here, by means of co-immunoprecipitation and bioluminescence resonance energy transfer methods we demonstrated that M(3) and M(5) muscarinic receptors could form constitutive homo- and heterodimers in transiently transfected HEK-293T cells. Interestingly, this receptor-receptor interaction was unaltered by carbachol treatment but it was affected by the expression of a peptide corresponding to a portion of the third intracellular loop of the M(5) muscarinic receptor. In addition, the same peptide was able to abrogate the carbachol-induced mitogen-activated protein kinase phosphorylation and the carbachol-enhanced PHA-induced IL-2 production in derived lymphocytic T cells. Overall, these results suggest that the third intracellular loop of the M(5) muscarinic receptor might play a regulatory role in receptor function and heteromerization, thus providing the molecular framework for a potential cholinergic-based therapeutic intervention of the immune system.

Collaboration


Dive into the Pere Garriga's collaboration.

Top Co-Authors

Avatar

Eva Ramon

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Joan Manyosa

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnau Cordomí

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Juan J. Perez

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Mònica Aguilà

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Darwin Toledo

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Luis J. del Valle

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge