Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Sanjuán is active.

Publication


Featured researches published by Eva Sanjuán.


Applied and Environmental Microbiology | 2001

Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2)

Ester Marco-Noales; Miguel Milán; Belén Fouz; Eva Sanjuán; Carmen Amaro

ABSTRACT Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed thatV. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.


Applied and Environmental Microbiology | 2009

Evaluation of Genotypic and Phenotypic Methods To Distinguish Clinical from Environmental Vibrio vulnificus Strains

Eva Sanjuán; Belén Fouz; James D. Oliver; Carmen Amaro

ABSTRACT Vibrio vulnificus is a heterogeneous bacterial species that comprises virulent and avirulent strains from environmental and clinical sources that have been grouped into three biotypes. To validate the typing methods proposed to distinguish clinical from environmental isolates, we performed phenotypic (API 20E, API 20NE, and BIOLOG tests) and genetic (ribotyping and DNA polymorphism at several loci) studies with a large strain collection representing different biotypes, origins, and host ranges. No phenotypic method was useful for biotyping or grouping strains with regard to the origin of an isolate, and only the BIOLOG system was reliable for identifying the strains at the species level. DNA polymorphisms divided the population into three major profiles. Profile 1 strains were vcg type C, 16S rRNA type B, and vvh type 1 and included most of the biotype 1 human septicemic isolates; profile 2 strains were vcg type E, 16S rRNA type A, and vvh type 2 and included all biotype 2 isolates together with biotype 1 isolates from fish and water and some human isolates; and profile 3 strains were vcg type E, 16S rRNA type AB, and vvh type 2 and included biotype 3 strains. Ribotyping divided the species into two groups: one group that included profile 1 biotype 1 isolates and one group that included isolates of all three biotypes with the three profiles described above. In conclusion, no genotyping system was able to distinguish either clinical strains from environmental strains or biogroups within the species V. vulnificus, which suggests that new typing methodologies useful for public health have to be developed for this species.


Applied and Environmental Microbiology | 2010

pilF Polymorphism-Based PCR To Distinguish Vibrio vulnificus Strains Potentially Dangerous to Public Health

Francisco J. Roig; Eva Sanjuán; Amparo Llorens; Carmen Amaro

ABSTRACT Vibrio vulnificus is a heterogeneous species that comprises strains virulent and avirulent for humans and fish, and it is grouped into three biotypes. In this report, we describe a PCR-based methodology that allows both the species identification and discrimination of those isolates that could be considered dangerous to public health. Discrimination is based on the amplification of a variable region located within the gene pilF, which seems to be associated with potential human pathogenicity, regardless of the biotype of the strain.


Applied and Environmental Microbiology | 2011

Polyphyletic Origin of Vibrio vulnificus Biotype 2 as Revealed by Sequence-Based Analysis

Eva Sanjuán; Fernando González-Candelas; Carmen Amaro

ABSTRACT A sequence-based analysis of seven housekeeping and virulence-related genes shows that the species Vibrio vulnificus is subdivided into three phylogenetic lineages that do not correspond with the biotypes and that biotype 2 is polyphyletic. These results support the reclassification of biotype 2 as a pathovar that would group the strains with pathogenic potential to develop vibriosis in fish.


Applied and Environmental Microbiology | 2004

Protocol for Specific Isolation of Virulent Strains of Vibrio vulnificus Serovar E (Biotype 2) from Environmental Samples

Eva Sanjuán; Carmen Amaro

ABSTRACT The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.


Applied and Environmental Microbiology | 2007

Multiplex PCR Assay for Detection of Vibrio vulnificus Biotype 2 and Simultaneous Discrimination of Serovar E Strains

Eva Sanjuán; Carmen Amaro

ABSTRACT In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples.


Applied and Environmental Microbiology | 2005

Identification of DNA sequences specific for Vibrio vulnificus biotype 2 strains by suppression subtractive hybridization

Chung-Te Lee; Carmen Amaro; Eva Sanjuán; Lien-I Hor

ABSTRACT Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains.


Microbiology spectrum | 2015

The Fish Pathogen Vibrio vulnificus Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis

Carmen Amaro; Eva Sanjuán; Belén Fouz; David Pajuelo; Chung-Te Lee; Lien-I Hor; Rodolfo Barrera

Vibrio vulnificus biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA13, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of rtxA13 are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood: vep07, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and vep20, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of V. vulnificus in nutrient-enriched aquatic environments, such as fish farms.


PLOS ONE | 2014

Genome-wide SNP-genotyping array to study the evolution of the human pathogen Vibrio vulnificus biotype 3.

Nili Raz; Yael Danin-Poleg; Ryan B. Hayman; Yudi Bar-On; Alex Linetsky; Michael Shmoish; Eva Sanjuán; Carmen Amaro; David R. Walt; Yechezkel Kashi

Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae, horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen.


Frontiers in Microbiology | 2018

Phylogeny of Vibrio vulnificus from the analysis of the core-genome: Implications for intra-species taxonomy

Francisco J. Roig; Fernando González-Candelas; Eva Sanjuán; Belén Fouz; Edward J. Feil; Carlos Llorens; Craig Baker-Austin; James D. Oliver; Yael Danin-Poleg; Cynthia J. Gibas; Yechezkel Kashi; Paul A. Gulig; Shatavia S. Morrison; Carmen Amaro

Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name “piscis.”

Collaboration


Dive into the Eva Sanjuán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belén Fouz

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Chung-Te Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Lien-I Hor

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Oliver

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Yael Danin-Poleg

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yechezkel Kashi

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge