Eva Seemanova
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Seemanova.
Cell | 1998
Raymonda Varon; Christine S. Vissinga; Matthias Platzer; Karen Cerosaletti; Krystyna H. Chrzanowska; Kathrin Saar; Georg Beckmann; Eva Seemanova; Paul R. Cooper; Norma J. Nowak; Markus Stumm; Corry M. R. Weemaes; Richard A. Gatti; Richard Wilson; Martin Digweed; André Rosenthal; Karl Sperling; Patrick Concannon; André Reis
Nijmegen breakage syndrome (NBS) is an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Cells from NBS patients are hypersensitive to ionizing radiation with cytogenetic features indistinguishable from ataxia telangiectasia. We describe the positional cloning of a gene encoding a novel protein, nibrin. It contains two modules found in cell cycle checkpoint proteins, a forkhead-associated domain adjacent to a breast cancer carboxy-terminal domain. A truncating 5 bp deletion was identified in the majority of NBS patients, carrying a conserved marker haplotype. Five further truncating mutations were identified in patients with other distinct haplotypes. The domains found in nibrin and the NBS phenotype suggest that this disorder is caused by defective responses to DNA double-strand breaks.
American Journal of Human Genetics | 2007
Eva Klopocki; Harald Schulze; Gabriele Strauß; Claus-Eric Ott; Judith G. Hall; Fabienne Trotier; Silke Fleischhauer; Lynn Greenhalgh; Ruth Newbury-Ecob; Luitgard M. Neumann; Rolf Habenicht; Rainer König; Eva Seemanova; André Mégarbané; Hans-Hilger Ropers; Reinhard Ullmann; Denise Horn; Stefan Mundlos
Thrombocytopenia-absent radius (TAR) syndrome is characterized by hypomegakaryocytic thrombocytopenia and bilateral radial aplasia in the presence of both thumbs. Other frequent associations are congenital heart disease and a high incidence of cows milk intolerance. Evidence for autosomal recessive inheritance comes from families with several affected individuals born to unaffected parents, but several other observations argue for a more complex pattern of inheritance. In this study, we describe a common interstitial microdeletion of 200 kb on chromosome 1q21.1 in all 30 investigated patients with TAR syndrome, detected by microarray-based comparative genomic hybridization. Analysis of the parents revealed that this deletion occurred de novo in 25% of affected individuals. Intriguingly, inheritance of the deletion along the maternal line as well as the paternal line was observed. The absence of this deletion in a cohort of control individuals argues for a specific role played by the microdeletion in the pathogenesis of TAR syndrome. We hypothesize that TAR syndrome is associated with a deletion on chromosome 1q21.1 but that the phenotype develops only in the presence of an additional as-yet-unknown modifier (mTAR).
Nature Genetics | 2010
Ion C. Cirstea; Kerstin Kutsche; Radovan Dvorsky; Lothar Gremer; Claudio Carta; Denise Horn; Amy E. Roberts; Francesca Lepri; Torsten Merbitz-Zahradnik; Rainer König; Christian P. Kratz; Francesca Pantaleoni; Maria Lisa Dentici; Victoria A. Joshi; Raju Kucherlapati; Laura Mazzanti; Stefan Mundlos; Michael A. Patton; Margherita Silengo; Cesare Rossi; Giuseppe Zampino; Cristina Digilio; Liborio Stuppia; Eva Seemanova; Len A. Pennacchio; Bruce D. Gelb; Bruno Dallapiccola; Alfred Wittinghofer; Mohammad Reza Ahmadian; Marco Tartaglia
Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced stimulus-dependent MAPK activation account for some cases of this disorder. These findings provide evidence for an obligate dependency on proper NRAS function in human development and growth.
Journal of Biological Chemistry | 1998
Petr Jarolim; Chairat Shayakul; Daniel Prabakaran; Lianwei Jiang; Alan K. Stuart-Tilley; Hillard L. Rubin; Sarka Simova; Jiri Zavadil; John T. Herrin; John Brouillette; Michael J. Somers; Eva Seemanova; Carlo Brugnara; Lisa M. Guay-Woodford; Seth L. Alper
Distal renal tubular acidosis (dRTA) is characterized by defective urinary acidification by the distal nephron. Cl−/HCO3 − exchange mediated by the AE1 anion exchanger in the basolateral membrane of type A intercalated cells is thought to be an essential component of lumenal H+ secretion by collecting duct intercalated cells. We evaluated the AE1 gene as a possible candidate gene for familial dRTA. We found in three unrelated families with autosomal dominant dRTA that all clinically affected individuals were heterozygous for a single missense mutation encoding the mutant AE1 polypeptide R589H. Patient red cells showed ∼20% reduction in sulfate influx of normal 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid sensitivity and pH dependence. Recombinant kidney AE1 R589H expressed in Xenopus oocytes showed 20–50% reduction in Cl−/Cl− and Cl−/HCO3 − exchange, but did not display a dominant negative phenotype for anion transport when coexpressed with wild-type AE1. One apparently unaffected individual for whom acid-loading data were unavailable also was heterozygous for the mutation. Thus, in contrast to previously described heterozygous loss-of-function mutations in AE1 associated with red cell abnormalities and apparently normal renal acidification, the heterozygous hypomorphic AE1 mutation R589H is associated with dominant dRTA and normal red cells.
Human Genetics | 1992
Karsten R. Held; S. Kerber; E. Kaminsky; S. Singh; P. Goetz; Eva Seemanova; H. W. Goedde
SummaryCytogenetic and molecular genetic findings in 91 patients with Turner syndrome are reported. In 87 patients, chromosome studies were carried out both in lymphocyte and fibroblast cultures. Mosaicism was demonstrated in 58 of these patients (66.7%), whereas only 18 (20.7%) were apparent non-mosaic 45,X, and 11 patients (12.6%) showed non-mosaic structural aberrations of the X chromosome. Among the mosaic cases 16 (18.4% of all patients) displayed a second cell line containing small marker chromosomes. The association of Y-specific chromosomal material with the presence of marker chromosomes was demonstrated in 6 out of 7 mixoploid fibroblast cell lines by polymerase chain reaction amplification and by Southern-blot analysis. The observation of ring formation and morphological variability in vivo and in vitro, and the continous reduction in the percentage of cells containing marker chromosomes in longterm cultivation experiments indicated an increased instability of marker chromosomes. The findings suggest that in vivo selection of structurally altered sex chromosomes exists. Thus, the observation of apparent non-mosaic 45,X chromosomal complements in liveborn individuals with Turner syndrome does not contradict the hypothesis that some degree of mosaicism is necessary for survival in early pregnancy.
Nature Genetics | 2000
Kristiina Avela; Marita Lipsanen-Nyman; Niina Idänheimo; Eva Seemanova; Sally Rosengren; Tomi P. Mäkelä; Jaakko Perheentupa; Albert de la Chapelle; Anna-Elina Lehesjoki
Mulibrey nanism (for muscle-liver-brain-eye nanism, MUL; MIM 253250) is an autosomal recessive disorder that involves several tissues of mesodermal origin, implying a defect in a highly pleiotropic gene. Characteristic features include severe growth failure of prenatal onset and constrictive pericardium with consequent hepatomegaly. In addition, muscle hypotonia, J-shaped sella turcica, yellowish dots in the ocular fundi, typical dysmorphic features and hypoplasia of various endocrine glands causing hormonal deficiency are common. About 4% of MUL patients develop Wilms′ tumour. MUL is enriched in the Finnish population, but is rare elsewhere. We previously assigned MUL to chromosome 17q22–q23 and constructed a physical contig over the critical MUL region. The region has now been further refined by haplotype analysis and new positional candidate genes have been localized. We identified a gene with four independent MUL-associated mutations that all cause a frameshift and predict a truncated protein. MUL is ubiquitously expressed and encodes a new member of the RING-B-box-Coiled-coil (RBCC) family of zinc-finger proteins, whose members are involved in diverse cellular functions such as developmental patterning and oncogenesis.
Current Biology | 2001
Velvizhi Ranganathan; Walter F. Heine; David N. Ciccone; Karl Lenhard Rudolph; Xiaohua Wu; Sandy Chang; Hua Hai; Ian M. Ahearn; David M. Livingston; Igor Resnick; Fred Rosen; Eva Seemanova; Petr Jarolim; Ronald A. DePinho; David T. Weaver
Nijmegen breakage syndrome (NBS) is a rare human disease displaying chromosome instability, radiosensitivity, cancer predisposition, immunodeficiency, and other defects [1, 2]. NBS is complexed with MRE11 and RAD50 in a DNA repair complex [3-5] and is localized to telomere ends in association with TRF proteins [6, 7]. We show that blood cells from NBS patients have shortened telomere DNA ends. Likewise, cultured NBS fibroblasts that exhibit a premature growth cessation were observed with correspondingly shortened telomeres. Introduction of the catalytic subunit of telomerase, TERT, was alone sufficient to increase the proliferative capacity of NBS fibroblasts. However, NBS, but not TERT, restores the capacity of NBS cells to survive gamma irradiation damage. Strikingly, NBS promotes telomere elongation in conjunction with TERT in NBS fibroblasts. These results suggest that NBS is a required accessory protein for telomere extension. Since NBS patients have shortened telomeres, these defects may contribute to the chromosome instability and disease associated with NBS patients.
Human Genetics | 2005
Oliver Bartsch; Stefanie Schmidt; Marion Richter; Susanne Morlot; Eva Seemanova; Glenis Wiebe; Sasan Rasi
Rubinstein–Taybi syndrome (RSTS) is a distinct dominant disorder characterized by short stature, typical face, broad angulated thumbs and halluces, and mental retardation. The RSTS can be caused by chromosomal microdeletions and molecular mutations in the CREBBP gene; however, relatively few mutations have been reported to date. Here, we aimed to determine the rate of point mutations and other small molecular lesions in true RSTS and possible mild variants, by using genomic DNA sequencing. A consecutive series of patients including 17 patients from our previous study was investigated. We identified 19 causative mutations of CREBBP in a total of 45 patients representing three different diagnostic groups: (a) 17 mutations in 30 patients with unequivocal RSTS (detection rate 56.6%), (b) two mutations in eight patients with features suggestive of RSTS (“moderate or incomplete RSTS”, detection rate 25%), and (c) no mutation in seven patients with undiagnosed syndromes and isolated features of RSTS. In general, the mutations were distributed without hot spots and most were unique; however, three recurrent mutations (R370X, R1664H, and N1978S) were identified. Furthermore, we detected 15 different intragenic polymorphisms, including two non-synonymous coding polymorphisms, L551I and Q2208H. We report not only the highest detection rate (56.6%) of CREBBP mutations in patients with RSTS to date, but also the second missense mutation (N1978S) in a patient with moderate or incomplete RSTS. Previous studies have identified cytogenetic deletions in the CREBBP gene in eight to 12% of patients and very recently, Roelfsema et al. reported EP300 gene mutations in three of 92 (3.3%) patients with either true RSTS or different syndromes resembling RSTS. Our 56.6% detection rate of molecular mutations in CREBBP in patients with unequivocal RSTS supports the new concept that RSTS is a genetically heterogeneous disorder and furthermore, indicates that RSTS may be caused by gene/s other than CREBBP in up to 30% of cases.
Human Mutation | 2013
Mark T. Handley; Deborah J. Morris-Rosendahl; Stephen Brown; Fiona Macdonald; Carol Hardy; Danai Bem; Sarah M. Carpanini; Guntram Borck; Loreto Martorell; Claudia Izzi; Francesca Faravelli; Patrizia Accorsi; Lorenzo Pinelli; Lina Basel-Vanagaite; Gabriela Peretz; Ghada M.H. Abdel-Salam; Maha S. Zaki; Anna Jansen; David Mowat; Ian A. Glass; Helen Stewart; Grazia M.S. Mancini; Damien Lederer; Tony Roscioli; Fabienne Giuliano; Astrid S. Plomp; Arndt Rolfs; John M. Graham; Eva Seemanova; Pilar Poo
Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal‐recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One‐hundred and forty‐four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype–phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.
European Journal of Medical Genetics | 2009
Monika Koudova; Eva Seemanova; Martin Zenker
Noonan syndrome (NS) and related disorders are caused by mutations in various genes encoding molecules involved in the RAS-MAPK signalling cascade. There are strong genotype-phenotype correlations. BRAF is the major gene for cardio-facio-cutaneous syndrome (CFCS), and usually patients with a BRAF mutation have significant cognitive impairment. We report on a patient with LEOPARD syndrome and normal intelligence who was found to carry a novel sequence change in BRAF. The mutation p.L245F was demonstrated to be de novo with no evidence of somatic mosaicism. This observation illustrates that the phenotypic spectrum caused by BRAF mutations is broader than previously assumed and that mental retardation is not necessarily associated. We speculate that the impact of p.L245F on BRAF protein function differs either qualitatively or quantitatively from those mutations associated with CFCS.