Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Krawczak is active.

Publication


Featured researches published by Michael Krawczak.


Nature Genetics | 2007

A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1.

Jochen Hampe; Andre Franke; Philip Rosenstiel; Andreas Till; Markus Teuber; Klaus Huse; Mario Albrecht; Gabriele Mayr; Francisco M. De La Vega; Jason Briggs; Simone Günther; Natalie J. Prescott; Clive M. Onnie; Robert Häsler; Bence Sipos; Ulrich R. Fölsch; Thomas Lengauer; Matthias Platzer; Christopher G. Mathew; Michael Krawczak; Stefan Schreiber

We performed a genome-wide association study of 19,779 nonsynonymous SNPs in 735 individuals with Crohn disease and 368 controls. A total of 7,159 of these SNPs were informative. We followed up on all 72 SNPs with P ≤ 0.01 with an allele-based disease association test in 380 independent Crohn disease trios, 498 Crohn disease singleton cases and 1,032 controls. Disease association of rs2241880 in the autophagy-related 16-like 1 gene (ATG16L1) was replicated in these samples (P = 4.0 × 10−8) and confirmed in a UK case-control sample (P = 0.0004). By haplotype and regression analysis, we found that marker rs2241880, a coding SNP (T300A), carries virtually all the disease risk exerted by the ATG16L1 locus. The ATG16L1 gene encodes a protein in the autophagosome pathway that processes intracellular bacteria. We found a statistically significant interaction with respect to Crohn disease risk between rs2241880 and the established CARD15 susceptibility variants (P = 0.039). Together with the lack of association between rs2241880 and ulcerative colitis (P > 0.4), these data suggest that the underlying biological process may be specific to Crohn disease.


Human Genetics | 1992

The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences.

Michael Krawczak; Jochen Reiss; David Neil Cooper

SummaryA total of 101 different examples of point mutations, which lie in the vicinity of mRNA splice junctions, and which have been held to be responsible for a human genetic disease by altering the accuracy of efficiency of mRNA splicing, have been collated. These data comprise 62 mutations at 5′ splice sites, 26 at 3′ splice sites and 13 that result in the creation of novel splice sites. It is estimated that up to 15% of all point mutations causing human genetic disease result in an mRNA splicing defect. Of the 5′ splice site mutations, 60% involved the invariant GT dinucleotide; mutations were found to be non-randomly distributed with an excess over expectation at positions +1 and +2, and apparent deficiencies at positions −1 and −2. Of the 3′ splice site mutations, 87% involved the invariant AG dinucleotide; an excess of mutations over expectation was noted at position -2. This non-randomness of mutation reflects the evolutionary conservation apparent in splice site consensus sequences drawn up previously from primate genes, and is most probably attributable to detection bias resulting from the differing phenotypic severity of specific lesions. The spectrum of point mutations was also drastically skewed: purines were significantly overrepresented as substituting nucleotides, perhaps because of steric hindrance (e.g. in U1 snRNA binding at 5′ splice sites). Furthermore, splice sites affected by point mutations resulting in human genetic disease were markedly different from the splice site consensus sequences. When similarity was quantified by a ‘consensus value’, both extremely low and extremely high values were notably absent from the wild-type sequences of the mutated splice sites. Splice sites of intermediate similarity to the consensus sequence may thus be more prone to the deleterious effects of mutation. Regarding the phenotypic effects of mutations on mRNA splicing, exon skipping occurred more frequently than cryptic splice site usage. Evidence is presented that indicates that, at least for 5′ splice site mutations, cryptic splice site usage is favoured under conditions where (1) a number of such sites are present in the immediate vicinity and (2) these sites exhibit sufficient homology to the splice site consensus sequence for them to be able to compete successfully with the mutated splice site. The novel concept of a “potential for cryptic splice site usage” value was introduced in order to quantify these characteristics, and to predict the relative proportion of exon skipping vs cryptic splice site utilization consequent to the introduction of a mutation at a normal splice site.


The Lancet | 2001

Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations

Jochen Hampe; Andrew Cuthbert; Peter J. P. Croucher; Muddassar Mirza; Silvia Mascheretti; Sheila Fisher; Henning Frenzel; Kathy King; Anja Hasselmeyer; A Macpherson; Stephen Bridger; Sander J. H. van Deventer; Alastair Forbes; Susanna Nikolaus; J E Lennard-Jones; Ulrich R. Foelsch; Michael Krawczak; Cathryn M. Lewis; Stefan Schreiber; Christopher G. Mathew

Background Genetic predisposition to inflammatory bowel disease (IBD) has been shown by epidemiological and linkage studies. Genetic linkage of IBD to chromosome 16 has been previously observed and replicated in independent populations. The recently identified NOD2 gene is a good positional and functional candidate gene since it is located in the region of linkage on chromosome 16q12, and activates nuclear factor (NF) kappaB in response to bacterial lipopolysaccharides. Methods We sequenced the coding region of the NOD2 gene and genotyped an insertion polymorphism affecting the leucine-rich region of the protein product in 512 individuals with IBD from 309 German or British families, 369 German trios (ie, German patients with sporadic IBD and their unaffected parents), and 272 normal controls. We then tested for association with Crohns disease and ulcerative colitis. Findings Family-based association analyses were consistently positive in 95 British and 99 German affected sibling pairs with Crohns disease (combined p<0.0001); the association was confirmed in the 304 German trios with Crohns disease. No association was seen in the 115 sibling pairs and 65 trios with ulcerative colitis. The genotype-specific disease risks conferred by heterozygous and homozygous mutant genotypes were 2.6 (95% CI 1.5-4.5) and 42.1 (4.3-infinity), respectively. Interpretation The insertion mutation in the NOD2 gene confers a substantially increased susceptibility to Crohns disease but not to ulcerative colitis.


International Journal of Legal Medicine | 1997

Evaluation of Y-chromosomal STRs: a multicenter study

Manfred Kayser; A. Caglià; Daniel Corach; Neale Fretwell; Christian Gehrig; G. Graziosi; F. Heidorn; S. Herrmann; B. Herzog; M. Hidding; Katsuya Honda; Mark A. Jobling; Michael Krawczak; K. Leim; S. Meuser; Eckhard Meyer; W. Oesterreich; Arpita Pandya; Walther Parson; G. Penacino; A. Perez-Lezaun; A. Piccinini; Mechthild Prinz; Cornelia Schmitt; Peter M. Schneider; Reinhard Szibor; J. Teifel-Greding; G. Weichhold; P. de Knijff; Lutz Roewer

Abstract A multicenter study has been carried out to characterize 13 polymorphic short tandem repeat (STR) systems located on the male specific part of the human Y chromosome (DYS19, DYS288, DYS385, DYS388, DYS389I/II, DYS390, DYS391, DYS392, DYS393, YCAI, YCAII, YCAIII, DXYS156Y). Amplification parameters and electrophoresis protocols including multiplex approaches were compiled. The typing of non-recombining Y loci with uniparental inheritance requires special attention to population substructuring due to prevalent male lineages. To assess the extent of these subheterogeneities up to 3825 unrelated males were typed in up to 48 population samples for the respective loci. A consistent repeat based nomenclature for most of the loci has been introduced. Moreover we have estimated the average mutation rate for DYS19 in 626 confirmed father-son pairs as 3.2 × 10–3 (95% confidence interval limits of 0.00041–0.00677), a value which can also be expected for other Y-STR loci with similar repeat structure. Recommendations are given for the forensic application of a basic set of 7 STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393) for standard Y-haplotyping in forensic and paternity casework. We recommend further the inclusion of the highly polymorphic bilocal Y-STRs DYS385, YCAII, YCAIII for a nearly complete individualisation of almost any given unrelated male individual. Together, these results suggest that Y-STR loci are useful markers to identify males and male lineages in forensic practice.


Trends in Genetics | 1997

The human gene mutation database

Michael Krawczak; David Neil Cooper

The Human Gene Mutation Database (HGMD) represents a comprehensive core collection of data on published germline mutations in nuclear genes underlying human inherited disease. By September 1997, the database contained nearly 12 000 different lesions in a total of 636 different genes, with new entries currently accumulating at a rate of over 2000 per annum. Although originally established for the scientific study of mutational mechanisms in human genes, HGMD has acquired a much broader utility to researchers, physicians and genetic counsellors so that it was made publicly available at http://uwcm.ac.uk/uwcm/mg/hgmd0.html in April 1996. Mutation data in HGMD are accessible on the basis of every gene being allocated one web page per mutation type, if data of that type are present. Meaningful integration with phenotypic, structural and mapping information has been accomplished through bi-directional links between HGMD and both the Genome Database (GDB) and Online Mendelian Inheritance in Man (OMIM), Baltimore, USA. Hypertext links have also been established to Medline abstracts through Entrez , and to a collection of 458 reference cDNA sequences also used for data checking. Being both comprehensive and fully integrated into the existing bioinformatics structures relevant to human genetics, HGMD has established itself as the central core database of inherited human gene mutations.


Nature Genetics | 2008

Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility

Andre Franke; Tobias Balschun; Tom H. Karlsen; Jurgita Sventoraityte; Susanna Nikolaus; Gabriele Mayr; Francisco S. Domingues; Mario Albrecht; Michael Nothnagel; David Ellinghaus; Christian Sina; Clive M. Onnie; Rinse K. Weersma; Pieter Stokkers; Cisca Wijmenga; Maria Gazouli; David P. Strachan; Wendy L. McArdle; Severine Vermeire; Paul Rutgeerts; Philip Rosenstiel; Michael Krawczak; Morten H. Vatn; Christopher G. Mathew; Stefan Schreiber

Inflammatory bowel disease (IBD) typically manifests as either ulcerative colitis (UC) or Crohns disease (CD). Systematic identification of susceptibility genes for IBD has thus far focused mainly on CD, and little is known about the genetic architecture of UC. Here we report a genome-wide association study with 440,794 SNPs genotyped in 1,167 individuals with UC and 777 healthy controls. Twenty of the most significantly associated SNPs were tested for replication in three independent European case-control panels comprising a total of 1,855 individuals with UC and 3,091 controls. Among the four consistently replicated markers, SNP rs3024505 immediately flanking the IL10 (interleukin 10) gene on chromosome 1q32.1 showed the most significant association in the combined verification samples (P = 1.35 × 10−12; OR = 1.46 (1.31–1.62)). The other markers were located in ARPC2 and in the HLA-BTNL2 region. Association between rs3024505 and CD (1,848 cases, 1,804 controls) was weak (P = 0.013; OR = 1.17 (1.01–1.34)). IL10 is an immunosuppressive cytokine that has long been proposed to influence IBD pathophysiology. Our findings strongly suggest that defective IL10 function is central to the pathogenesis of the UC subtype of IBD.


Human Genetics | 1991

Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment

Michael Krawczak; David Neil Cooper

SummaryReports describing short (< 20 bp) gene deletions causing human genetic disease were collated in order to study underlying causative mechanisms. Deletion break-point junction regions were found to be non-random both at the nucleotide and dinucleotide sequence levels, an observation consistent with an endogenous sequencedirected mechanism of mutagenesis. Direct repeats of between 2 bp and 8 bp were found in the immediate vicinity of all but one of the 60 deletions analysed. Direct repeats are a feature of a number of recombination, replication or repair-based models of deletion mutagenesis and the possible contribution of each to the spectrum of mutations examined was assessed. The influence of parameters such as repeat length and lenght of DNA between repeats was studied in relation to the frequency, location and extent of these deletions. Findings were broadly consistent with a slipped mispairing model but the predicted deletion of one whole repeat copy was found only rarely. A modified version of the slipped mispairing hypothesis was therefore proposed and was shown to possess considerable explanatory value for ∼ 25% of deletions examined. Whereas the frequency of inverted repeats in the vicinity of gene deletions was not significantly elevated, these elements may nevertheless promote instability by facilitating the formation of secondary structure intermediates. A significant excess of symmetrical sequence elements was however found at sites of single base deletions. A new model to explain the involvement of symmetric elements in frameshift mutagenesis was devised, which successfully accounted for a majority of the single base deletions examined. In general, the loss of one or a few base pairs of DNA was found to be more compatible with a replication-based model of mutagenesis than with a recombination or repair hypothesis. Seven hitherto unrecognized hotspots for deletion were noted in five genes (AT3, F8, HBA, HBB and HPRT). Considerable sequence homology was found between these different sites, and a consensus sequence (TGA/GA/GG/ TA/C) was drawn up. Sequences fitting this consensus (i) were noted in the immediate vicinity of 41% of the other (sporadic) gene deletions, (ii) were found frequently at sites of spontaneous deletion in the hamster APRT gene, (iii) were found to be associated with many larger human gene deletions/translocations, (iv) act as arrest sites for human polymerase a during DNA replication and (v) have been shown by in vitro studies of human polymerase a to be especially prone to frameshift mutation. It is proposed that dissociation of polymerase a at arrest sites may, by providing a stable single stranded substrate, lead to deletion of a DNA sequence either by slipped mispairing via a number of different secondary structure intermediates, or by strand-switching or base misincorporation. Human gene deletions thus appear to be caused by multiple mechanisms whose relative importance is probably governed by local primary and secondary DNA structure. Our ability to predict precisely the location and extent of a gene deletion is however hampered both by this complexity and by the possibility that these mechanisms may often act in combination.


The Lancet | 2002

Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study

Jochen Hampe; Jochen Grebe; Susanna Nikolaus; Camilla Solberg; Peter J. P. Croucher; Silvia Mascheretti; Jørgen Jahnsen; Bjørn Moum; Bodo Klump; Michael Krawczak; Muddassar Mirza; Ulrich R. Foelsch; Morten H. Vatn; Stefan Schreiber

BACKGROUND Crohns disease is a heterogeneous disorder for which NOD2 (CARD 15) has been identified as a susceptibility gene. We investigate the relation between NOD2 genotype and phenotypic characteristics of patients with Crohns disease. METHODS Hypotheses about the relation between NOD2 genotype and Crohns disease phenotype were generated retrospectively from a group of 446 German patients with this disorder. Positive findings (p<0.10) were verified in prospectively established cohorts of 106 German and 55 Norwegian patients with Crohns disease. All patients were genotyped for the main coding mutations in NOD2, denoted SNP8, SNP12, and SNP13, with Taqman technology. FINDINGS In the retrospective cohort, six clinical characteristics showed noteworthy haplotype association: fistulising, ileal, left colonic and right colonic disease, stenosis, and resection. In the German prospective cohort, these haplotype associations could be replicated for ileal (p=0.006) and right colonic disease (p < or =0.001). A similar trend was noted in the Norwegian patients. INTERPRETATION We recorded a distinct relation between NOD2 genotype and phenotype of Crohns disease. Test strategies with NOD2 variations to predict the clinical course of Crohns disease could lead to the development of new therapeutic paradigms.


Current Biology | 2008

Correlation between Genetic and Geographic Structure in Europe

Oscar Lao; Timothy Lu; Michael Nothnagel; Olaf Junge; Sandra Freitag-Wolf; Amke Caliebe; Miroslava Balascakova; Jaume Bertranpetit; Laurence A. Bindoff; David Comas; Gunilla Holmlund; Anastasia Kouvatsi; Milan Macek; Isabelle Mollet; Walther Parson; Jukka U. Palo; Rafał Płoski; Antti Sajantila; Adriano Tagliabracci; Ulrik Gether; Thomas Werge; Fernando Rivadeneira; Albert Hofman; André G. Uitterlinden; Christian Gieger; Heinz-Erich Wichmann; Andreas Rüther; Stefan Schreiber; Christian Becker; Peter Nürnberg

Understanding the genetic structure of the European population is important, not only from a historical perspective, but also for the appropriate design and interpretation of genetic epidemiological studies. Previous population genetic analyses with autosomal markers in Europe either had a wide geographic but narrow genomic coverage [1, 2], or vice versa [3-6]. We therefore investigated Affymetrix GeneChip 500K genotype data from 2,514 individuals belonging to 23 different subpopulations, widely spread over Europe. Although we found only a low level of genetic differentiation between subpopulations, the existing differences were characterized by a strong continent-wide correlation between geographic and genetic distance. Furthermore, mean heterozygosity was larger, and mean linkage disequilibrium smaller, in southern as compared to northern Europe. Both parameters clearly showed a clinal distribution that provided evidence for a spatial continuity of genetic diversity in Europe. Our comprehensive genetic data are thus compatible with expectations based upon European population history, including the hypotheses of a south-north expansion and/or a larger effective population size in southern than in northern Europe. By including the widely used CEPH from Utah (CEU) samples into our analysis, we could show that these individuals represent northern and western Europeans reasonably well, thereby confirming their assumed regional ancestry.


Human Genetics | 1990

The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions

David Neil Cooper; Michael Krawczak

SummaryReports of single base-pair substitutions that cause human genetic disease and that have been located and characterized in an unbiased fashion were collated; 32% of point mutations were CG → TG or CG → CA transitions consistent with a chemical model of mutation via methylation-mediated deamination. This represents a 12-fold higher frequency than that predicted from random expectation, confirming that CG dinucleotides are indeed hotspots of mutation causing human genetic disease. However, since CG also appears hypermutable irrespective of methylation-mediated deamination, a second mechanism may also be involved in generating CG mutations. The spectrum of point mutations occurring outwith CG dinucleotides is also non-random, at both the mono- and dinucleotide levels. An intrinsic bias in clinical detection was excluded since frequencies of specific amino acid substitutions did not correlate with the ‘chemical difference’ between the amino acids exchanged. Instead, a strong correlation was observed with the mutational spectrum predicted from the experimentally measured mispairing frequencies of vertebrate DNA polymerases α and β in vitro. This correlation appears to be independent of any difference in the efficiency of enzymatic proofreading/mismatch-repair mechanisms but is consistent with a physical model of mutation through nucleotide misincorporation as a result of transient misalignment of bases at the replication fork. This model is further supported by an observed correlation between dinucleotide mutability and stability, possibly because transient misalignment must be stabilized long enough for misincorporation to occur. Since point mutations in human genes causing genetic disease neither arise by random error nor are independent of their local sequence environment, predictive models may be considered. We present a computer model (MUTPRED) based upon empirical data; it is designed to predict the location of point mutations within gene coding regions causing human genetic disease. The mutational spectrum predicted for the human factor IX gene was shown to resemble closely the observed spectrum of point mutations causing haemophilia B. Further, the model was able to predict successfully the rank order of disease prevalence and/or mutation rates associated with various human autosomal dominant and sex-linked recessive conditions. Although still imperfect, this model nevertheless represents an initial attempt to relate the variable prevalence of human genetic disease to the mutability inherent in the nucleotide sequences of the underlying genes.

Collaboration


Dive into the Michael Krawczak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge