Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Van Overmeire is active.

Publication


Featured researches published by Eva Van Overmeire.


Cancer Research | 2014

Tumor Hypoxia Does Not Drive Differentiation of Tumor-Associated Macrophages but Rather Fine-Tunes the M2-like Macrophage Population

Damya Laoui; Eva Van Overmeire; Giusy Di Conza; Chiara Aldeni; Jiri Keirsse; Yannick Morias; Kiavash Movahedi; Isabelle Houbracken; Elio Schouppe; Yvon Elkrim; Oussama Karroum; Bénédicte F. Jordan; Peter Carmeliet; Conny Gysemans; Patrick De Baetselier; Massimiliano Mazzone; Jo A. Van Ginderachter

Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.


Frontiers in Immunology | 2014

Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression

Damya Laoui; Eva Van Overmeire; Patrick De Baetselier; Jo A. Van Ginderachter; Geert Raes

The current review article describes the functional relationship between tumor-associated macrophages (TAM) as key cellular contributors to cancer malignancy on the one hand and macrophage-colony-stimulating factor (M-CSF or CSF-1) as an important molecular contributor on the other. We recapitulate the available data on expression of M-CSF and the M-CSF receptor (M-CSFR) in human tumor tissue as constituents of a stromal macrophage signature and on the limits of the predictive and prognostic value of plasma M-CSF levels. After providing an update on current insights into the nature of TAM heterogeneity at the level of M1/M2 phenotype and TAM subsets, we give an overview of experimental evidence, based on genetic, antibody-mediated, and pharmacological disruption of M-CSF/M-CSFR signaling, for the extent to which M-CSFR signaling can not only determine the TAM quantity, but can also contribute to shaping the phenotype and heterogeneity of TAM and other related tumor-infiltrating myeloid cells (TIM). Finally, we review the accumulating information on the – sometimes conflicting – effects blocking M-CSFR signaling may have on various aspects of cancer progression such as tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy and we thereby discuss in how far these different effects actually reflect a contribution of TAM.


Immunobiology | 2011

Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site

Damya Laoui; Eva Van Overmeire; Kiavash Movahedi; Jan Van den Bossche; Elio Schouppe; Camille Mommer; Alexandros Nikolaou; Yannick Morias; Patrick De Baetselier; Jo A. Van Ginderachter

Mononuclear phagocytes are amongst the most versatile cells of the body, contributing to tissue genesis and homeostasis and safeguarding the balance between pro- and anti-inflammatory reactions. Accordingly, these cells are notoriously heterogeneous, functioning in distinct differentiation forms (monocytes, MDSC, macrophages, DC) and adopting different activation states in response to a changing microenvironment. Accumulating evidence exists that mononuclear phagocytes contribute to all phases of the cancer process. These cells orchestrate the inflammatory events during de novo carcinogenesis, participate in tumor immunosurveillance, and contribute to the progression of established tumors. At the tumor site, cells such as tumor-associated macrophages (TAM) are confronted with different tumor microenvironments, leading to TAM subsets with specialized functions. A better refinement of the molecular and functional heterogeneity of tumor-associated mononuclear phagocytes might pave the way for novel cancer therapies that directly target these tumor-supporting cells.


Journal of Leukocyte Biology | 2012

Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes

Jan Van den Bossche; Wouter H. Lamers; Eleonore S. Koehler; Jan Geuns; Leena Alhonen; Anne Uimari; Sini Pirnes-Karhu; Eva Van Overmeire; Yannick Morias; Lea Brys; Lars Vereecke; Patrick De Baetselier; Jo A. Van Ginderachter

In macrophages, basal polyamine (putrescine, spermidine, and spermine) levels are relatively low but are increased upon IL‐4 stimulation. This Th2 cytokine induces Arg1 activity, which converts arginine into ornithine, and ornithine can be decarboxylated by ODC to produce putrescine, which is further converted into spermidine and spermine. Recently, we proposed polyamines as novel agents in IL‐4‐dependent E‐cadherin regulation in AAMs. Here, we demonstrate for the first time that several, but not all, AAM markers depend on polyamines for their IL‐4‐induced gene and protein expression and that polyamine dependency of genes relies on the macrophage type. Remarkably, Arg1‐deficient macrophages display rather enhanced IL‐4‐induced polyamine production, suggesting that an Arg1‐independent polyamine synthesis pathway may operate in macrophages. On the other side of the macrophage activation spectrum, LPS‐induced expression of several proinflammatory genes was increased significantly in polyamine‐depleted CAMs. Overall, we propose Arg1 independently produced polyamines as novel regulators of the inflammatory status of the macrophage. Indeed, whereas polyamines are needed for IL‐4‐induced expression of several AAM mediators, they inhibit the LPS‐mediated expression of proinflammatory genes in CAMs.


Frontiers in Immunology | 2014

Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues.

Eva Van Overmeire; Damya Laoui; Jiri Keirsse; Jo A. Van Ginderachter; Adelaida Sarukhan

Macrophages are extremely versatile cells that adopt a distinct phenotype in response to a changing microenvironment. Consequently, macrophages are involved in diverse functions, ranging from organogenesis and tissue homeostasis to recognition and destruction of invading pathogens. In cancer, tumor-associated macrophages (TAM) often contribute to tumor progression by increasing cancer cell migration and invasiveness, stimulating angiogenesis, and suppressing anti-tumor immunity. Accumulating evidence suggests that these different functions could be exerted by specialized TAM subpopulations. Here, we discuss the potential underlying mechanisms regulating TAM specialization and elaborate on TAM heterogeneity in terms of their ontogeny, activation state, and intra-tumoral localization. In addition, parallels are drawn between TAM and macrophages in other tissues. Together, a better understanding of TAM diversity could provide a rationale for novel strategies aimed at targeting the most potent tumor-supporting macrophages.


Cancer Research | 2016

M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment

Eva Van Overmeire; Benoît Stijlemans; Felix Heymann; Jiri Keirsse; Yannick Morias; Yvon Elkrim; Lea Brys; Chloé Abels; Qods Lahmar; Can Ergen; Lars Vereecke; Frank Tacke; Patrick De Baetselier; Jo A. Van Ginderachter; Damya Laoui

Tumors contain a heterogeneous myeloid fraction comprised of discrete MHC-II(hi) and MHC-II(lo) tumor-associated macrophage (TAM) subpopulations that originate from Ly6C(hi) monocytes. However, the mechanisms regulating the abundance and phenotype of distinct TAM subsets remain unknown. Here, we investigated the role of macrophage colony-stimulating factor (M-CSF) in TAM differentiation and polarization in different mouse tumor models. We demonstrate that treatment of tumor-bearing mice with a blocking anti-M-CSFR monoclonal antibody resulted in a reduction of mature TAMs due to impaired recruitment, extravasation, proliferation, and maturation of their Ly6C(hi) monocytic precursors. M-CSFR signaling blockade shifted the MHC-II(lo)/MHC-II(hi) TAM balance in favor of the latter as observed by the preferential differentiation of Ly6C(hi) monocytes into MHC-II(hi) TAMs. In addition, the genetic and functional signatures of MHC-II(lo) TAMs were downregulated upon M-CSFR blockade, indicating that M-CSFR signaling shapes the MHC-II(lo) TAM phenotype. Conversely, granulocyte macrophage (GM)-CSFR had no effect on the mononuclear tumor infiltrate or relative abundance of TAM subsets. However, GM-CSFR signaling played an important role in fine-tuning the MHC-II(hi) phenotype. Overall, our data uncover the multifaceted and opposing roles of M-CSFR and GM-CSFR signaling in governing the phenotype of macrophage subsets in tumors, and provide new insight into the mechanism of action underlying M-CSFR blockade.


Biochimica et Biophysica Acta | 2016

Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment.

Qods Lahmar; Jiri Keirsse; Damya Laoui; Kiavash Movahedi; Eva Van Overmeire; Jo A. Van Ginderachter

The tumor-promoting role of macrophages has been firmly established in most cancer types. However, macrophage identity has been a matter of debate, since several levels of complexity result in considerable macrophage heterogeneity. Ontogenically, tissue-resident macrophages derive from yolk sac progenitors which either directly or via a fetal liver monocyte intermediate differentiate into distinct macrophage types during embryogenesis and are maintained throughout life, while a disruption of the steady state mobilizes monocytes and instructs the formation of monocyte-derived macrophages. Histologically, the macrophage phenotype is heavily influenced by the tissue microenvironment resulting in molecularly and functionally distinct macrophages in distinct organs. Finally, a change in the tissue microenvironment as a result of infectious or sterile inflammation instructs different modes of macrophage activation. These considerations are relevant in the context of tumors, which can be considered as sites of chronic sterile inflammation encompassing subregions with distinct environmental conditions (for example, hypoxic versus normoxic). Here, we discuss existing evidence on the role of macrophage subpopulations in steady state tissue and primary tumors of the breast, lung, pancreas, brain and liver.


Nature Communications | 2016

The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity

Damya Laoui; Jiri Keirsse; Yannick Morias; Eva Van Overmeire; Xenia Geeraerts; Yvon Elkrim; Mate Kiss; Evangelia Bolli; Qods Lahmar; Dorine Sichien; Jens Serneels; Charlotte L. Scott; Louis Boon; Patrick De Baetselier; Massimiliano Mazzone; Martin Guilliams; Jo A. Van Ginderachter

Various steady state and inflamed tissues have been shown to contain a heterogeneous DC population consisting of developmentally distinct subsets, including cDC1s, cDC2s and monocyte-derived DCs, displaying differential functional specializations. The identification of functionally distinct tumour-associated DC (TADC) subpopulations could prove essential for the understanding of basic TADC biology and for envisaging targeted immunotherapies. We demonstrate that multiple mouse tumours as well as human tumours harbour ontogenically discrete TADC subsets. Monocyte-derived TADCs are prominent in tumour antigen uptake, but lack strong T-cell stimulatory capacity due to NO-mediated immunosuppression. Pre-cDC-derived TADCs have lymph node migratory potential, whereby cDC1s efficiently activate CD8+ T cells and cDC2s induce Th17 cells. Mice vaccinated with cDC2s displayed a reduced tumour growth accompanied by a reprogramming of pro-tumoural TAMs and a reduction of MDSCs, while cDC1 vaccination strongly induces anti-tumour CTLs. Our data might prove important for therapeutic interventions targeted at specific TADC subsets or their precursors.


Diabetes | 2015

Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury

Yixing Yuchi; Ying Cai; Bart Legein; Sofie De Groef; Gunter Leuckx; Violette Coppens; Eva Van Overmeire; Willem Staels; Nico De Leu; Geert A. Martens; Jo A. Van Ginderachter; Harry Heimberg; Mark Van de Casteele

Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα−/−), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3+ progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.


Immunobiology | 2013

Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells

Elio Schouppe; Eva Van Overmeire; Damya Laoui; Jiri Keirsse; Jo A. Van Ginderachter

Myeloid-derived suppressor cells are immature myeloid cells, consisting of a monocytic and a granulocytic fraction, that are known to suppress anti-tumor immune responses. Important targets of the immunosuppressive capacity of MDSC are CD8(+) T cells, which are crucial cytotoxic effector cells in immunotherapeutic settings. CD8(+) T-cell activation and differentiation comprises a well-orchestrated series of events, starting from early TCR-mediated signaling and leading to cytokine secretion, the expression of activation markers, proliferation and the differentiation into several subsets of effector and memory cells. In this review, we summarize the available data on how the production of reactive oxygen species, nitric oxide, the arginase-mediated depletion of l-arginine and Cystine depletion by MDSCs interfere with the signaling molecules necessary for normal CTL differentiation and activation.

Collaboration


Dive into the Eva Van Overmeire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damya Laoui

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jiri Keirsse

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yannick Morias

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Elio Schouppe

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qods Lahmar

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvon Elkrim

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge