Eva Žižková
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Žižková.
Journal of Experimental Botany | 2011
Silvia Gajdošová; Lukáš Spíchal; Miroslav Kamínek; Klára Hoyerová; Ondřej Novák; Petre I. Dobrev; Petr Galuszka; Petr Klíma; Alena Gaudinová; Eva Žižková; Jan Hanuš; Martin Dančák; Bohumil Trávníček; Bedřich Pešek; Martin Krupička; Radomíra Vaňková; Miroslav Strnad; Václav Motyka
Cytokinins (CKs) are plant hormones affecting numerous developmental processes. Zeatin and its derivatives are the most important group of isoprenoid CKs. Zeatin occurs as two isomers: while trans-zeatin (transZ) was found to be a bioactive substance, cis-zeatin (cisZ) was reported to have a weak biological impact. Even though cisZ derivatives are abundant in various plant materials their biological role is still unknown. The comprehensive screen of land plants presented here suggests that cisZ-type CKs occur ubiquitously in the plant kingdom but their abundance might correlate with a strategy of life rather than with evolutionary complexity. Changing levels of transZ and cisZ during Arabidopsis ontogenesis show that levels of the two zeatin isomers can differ significantly during the life span of the plant, with cisZ-type CKs prevalent in the developmental stages associated with limited growth. A survey of the bioassays employed illustrates mild activity of cisZ and its derivatives. No cis↔trans isomerization, which would account for the effects of cisZ, was observed in tobacco cells and oat leaves. Differences in uptake between the two isomers resulting in distinct bioactivity have not been detected. In contrast, cisZ and transZ have a different metabolic fate in oat and tobacco. Analysis of a CK-degrading enzyme, cytokinin oxidase/dehydrogenase (CKX), reveals that Arabidopsis possesses two isoforms, AtCKX1 expressed in stages of active growth, and AtCKX7, both of which have the highest affinity for the cisZ isomer. Based on the present results, the conceivable function of cisZ-type CKs as delicate regulators of CK responses in plants under growth-limiting conditions is hypothesized.
BMC Plant Biology | 2015
Eva Žižková; Petre I. Dobrev; Yordan Muhovski; Petr Hošek; Klára Hoyerová; D. Haisel; Dagmar Procházková; Stanley Lutts; Václav Motyka; Imène Hichri
BackgroundCytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered.ResultsTwo tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K+/Na+ ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis.ConclusionsSlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.
Frontiers in Plant Science | 2016
Marc Behr; Sylvain Legay; Eva Žižková; Václav Motyka; Petre I. Dobrev; Jean-Francois Hausman; Stanley Lutts; Gea Guerriero
Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e., elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e., 6–9–15–20 days after sowing) to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases, and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).
Journal of Plant Physiology | 2012
Wendy A. Stirk; Ondřej Novák; Eva Žižková; Václav Motyka; Miroslav Strnad; Johannes Van Staden
Tagetes minuta L. achenes are thermoinhibited at temperatures above 35°C and have accelerated radicle emergence (germination) when subsequently transferred to an optimal temperature (25°C). Endogenous cytokinins and cytokinin oxidase/dehydrogenase (CKX) activity were compared in normally germinating (25°C) and thermoinhibited (72h at 36°C then transferred to 25°C) T. minuta achenes. Following imbibition, endogenous cytokinin concentrations changed in normally germinating T. minuta achenes, with a gradual decrease in dihydrozeatin-type (DHZ) cytokinins, a large increase in cis-zeatin-type (cZ) cytokinins, a smaller increase in N⁶-(2-isopentenyl)adenine-type (iP) cytokinins and a peak of trans-zeatin-type (tZ) cytokinins at 13 h. These changes in the isoprenoid cytokinin profile were similar in the thermoinhibited achenes imbibed at 36°C, despite the thermal block preventing radicle emergence. The exception was the iP-type cytokinins that only increased when transferred to 25°C. Profiles of the physiologically active free bases showed an increase in tZ prior to radical emergence in both normally germinating (13 h) and thermoinhibited achenes. A large transient peak in aromatic cytokinins [N⁶-benzyladenine-type (BA)] occurred during early seedling establishment in normally germinating achenes (40 h) while a transient maximum in BA-type cytokinins was found prior to radicle emergence in the thermoinhibited achenes (24 h). The CKX activity was enhanced in normally germinating achenes as the cytokinin concentration increased following imbibition. In thermoinhibited achenes, an elevated temperature negatively affected the CKX activity that only increased when the achenes were transferred to 25°C, corresponding to an increase in iP-type cytokinins. However, the favored cytokinin deactivation pathway in T. minuta appears to be 9-glycosylation, as 9-glucosides accounted for over 50% of the total cytokinin pool in both normal and thermoinhibited achenes.
Journal of Plant Growth Regulation | 2012
Martin Raspor; Václav Motyka; Eva Žižková; Petre I. Dobrev; Alena Trávníčková; Snežana Zdravković-Korać; Ana Simonović; Slavica Ninković; Ivana Č. Dragićević
Genes encoding cytokinin oxidase/dehydrogenase (CKX) enzymes have been used lately to study cytokinin homeostasis in a variety of plant species. In this study AtCKX2-overexpressing potato plants were engineered and grown in vitro as a model system to investigate the effects of altered cytokinin levels on tuber formation and tuber size. Protein extracts from shoots and roots of transformed potato plants exhibited higher CKX activity compared to control plants. Total endogenous cytokinin levels were generally not decreased in AtCKX2 overexpressors. However, levels of bioactive cytokinins were markedly lowered, which was accompanied by increased levels of O- and N-glucosides in some transgenic lines. The AtCKX2-overexpressing plants displayed reduced shoot growth but other symptoms of the “cytokinin deficiency syndrome” were not recorded. The transgenic plants were able to produce tubers in noninducing conditions. In inducing conditions they developed larger tubers than control. Tubers were also formed on a greater portion of the analyzed AtCKX2 plants, but with a lower number of tubers per plant compared to control. Taken together, our data suggest that cytokinins cannot be regarded simply as positive or negative regulators of tuberization, at least in vitro. Interactions with other plant hormones that play an important role in control of tuberization, such as gibberellins, should be further studied in detail.
Annals of Botany | 2017
Eva Žižková; Martin Kubeš; Petre I. Dobrev; Pavel Přibyl; Jan Šimura; Lenka Zahajská; Lenka Záveská Drábková; Ondřej Novák; Václav Motyka
Background and Aims The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Methods Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. Key Results The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. Conclusions Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants.
Frontiers in Plant Science | 2017
Imène Hichri; Yordan Muhovski; Eva Žižková; Petre I. Dobrev; Emna Gharbi; José Manuel Franco-Zorrilla; Irene López-Vidriero; Roberto Solano; André Clippe; Abdelmounaim Errachid; Václav Motyka; Stanley Lutts
Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days) 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass) and photosynthesis (stomatal conductance and chlorophyll a content) were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.
Plant Cell and Environment | 2016
Imène Hichri; Yordan Muhovski; André Clippe; Eva Žižková; Petre I. Dobrev; Václav Motyka; Stanley Lutts
Plant Soil and Environment | 2018
D. Pavlíková; M. Neuberg; Eva Žižková; Václav Motyka; Milan Pavlík
Plant Soil and Environment | 2018
M. Neuberg; D. Pavlíková; Eva Žižková; Václav Motyka; Milan Pavlík