Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evadnie Rampersaud is active.

Publication


Featured researches published by Evadnie Rampersaud.


Nature | 2011

Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia

Han Xiang Deng; Wenjie Chen; Seong-Tshool Hong; Kym M. Boycott; George H. Gorrie; Nailah Siddique; Yi Yang; Faisal Fecto; Yong-Yong Shi; Hong Zhai; Hujun Jiang; Makito Hirano; Evadnie Rampersaud; Gerard Jansen; Sandra Donkervoort; Eileen H. Bigio; Benjamin Rix Brooks; Kaouther Ajroud; Robert Sufit; Jonathan L. Haines; Enrico Mugnaini; Margaret A. Pericak-Vance; Teepu Siddique

Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5–10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin 2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin 2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin 2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin 2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Whole-genome association study identifies STK39 as a hypertension susceptibility gene

Ying Wang; Jeffrey R. O'Connell; Patrick F. McArdle; James B. Wade; Sarah E. Dorff; Sanjiv J. Shah; Xiaolian Shi; Lin Pan; Evadnie Rampersaud; Haiqing Shen; James Kim; Arohan R. Subramanya; Nanette I. Steinle; Afshin Parsa; Carole Ober; Paul A. Welling; Aravinda Chakravarti; Alan B. Weder; Richard S. Cooper; Braxton D. Mitchell; Alan R. Shuldiner; Yen Pei C Chang

Hypertension places a major burden on individual and public health, but the genetic basis of this complex disorder is poorly understood. We conducted a genome-wide association study of systolic and diastolic blood pressure (SBP and DBP) in Amish subjects and found strong association signals with common variants in a serine/threonine kinase gene, STK39. We confirmed this association in an independent Amish and 4 non-Amish Caucasian samples including the Diabetes Genetics Initiative, Framingham Heart Study, GenNet, and Hutterites (meta-analysis combining all studies: n = 7,125, P < 10−6). The higher BP-associated alleles have frequencies > 0.09 and were associated with increases of 3.3/1.3 mm Hg in SBP/DBP, respectively, in the Amish subjects and with smaller but consistent effects across the non-Amish studies. Cell-based functional studies showed that STK39 interacts with WNK kinases and cation-chloride cotransporters, mutations in which cause monogenic forms of BP dysregulation. We demonstrate that in vivo, STK39 is expressed in the distal nephron, where it may interact with these proteins. Although none of the associated SNPs alter protein structure, we identified and experimentally confirmed a highly conserved intronic element with allele-specific in vitro transcription activity as a functional candidate for this association. Thus, variants in STK39 may influence BP by increasing STK39 expression and consequently altering renal Na+ excretion, thus unifying rare and common BP-regulating alleles in the same physiological pathway.


American Journal of Human Genetics | 2011

Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy.

Nadine Norton; Duanxiang Li; Mark J. Rieder; Jill D. Siegfried; Evadnie Rampersaud; Stephan Züchner; Steve Mangos; Jorge Gonzalez-Quintana; Libin Wang; Sean McGee; Jochen Reiser; Eden R. Martin; Deborah A. Nickerson; Ray E. Hershberger

Dilated cardiomyopathy commonly causes heart failure and is the most frequent precipitating cause of heart transplantation. Familial dilated cardiomyopathy has been shown to be caused by rare variant mutations in more than 30 genes but only ~35% of its genetic cause has been identified, principally by using linkage-based or candidate gene discovery approaches. In a multigenerational family with autosomal dominant transmission, we employed whole-exome sequencing in a proband and three of his affected family members, and genome-wide copy number variation in the proband and his affected father and unaffected mother. Exome sequencing identified 428 single point variants resulting in missense, nonsense, or splice site changes. Genome-wide copy number analysis identified 51 insertion deletions and 440 copy number variants > 1 kb. Of these, a 8733 bp deletion, encompassing exon 4 of the heat shock protein cochaperone BCL2-associated athanogene 3 (BAG3), was found in seven affected family members and was absent in 355 controls. To establish the relevance of variants in this protein class in genetic DCM, we sequenced the coding exons in BAG3 in 311 other unrelated DCM probands and identified one frameshift, two nonsense, and four missense rare variants absent in 355 control DNAs, four of which were familial and segregated with disease. Knockdown of bag3 in a zebrafish model recapitulated DCM and heart failure. We conclude that new comprehensive genomic approaches have identified rare variants in BAG3 as causative of DCM.


Diabetes | 2007

Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: Evidence for replication from diabetes-related quantitative traits and from independent populations

Evadnie Rampersaud; Coleen M. Damcott; Mao Fu; Haiqing Shen; Patrick F. McArdle; Xiaolian Shi; John Shelton; Jing Yin; Yen-Pei C. Chang; Sandra Ott; Li Zhang; Yi-Ju Zhao; Braxton D. Mitchell; Jeffery R. O'Connell; Alan R. Shuldiner

OBJECTIVE— We sought to identify type 2 diabetes susceptibility genes through a genome-wide association scan (GWAS) in the Amish. RESEARCH DESIGN AND METHODS— DNA from 124 type 2 diabetic case subjects and 295 control subjects with normal glucose tolerance were genotyped on the Affymetrix 100K single nucleotide polymorphism (SNP) array. A total of 82,485 SNPs were tested for association with type 2 diabetes. Type 2 diabetes–associated SNPs were further prioritized by the following: 1) associations with 5 oral glucose tolerance test (OGTT) traits in 427 nondiabetic Amish subjects, and 2) in silico replication from three independent 100L SNP GWASs (Framingham Heart Study Caucasians, Pima Indians, and Mexican Americans) and a 500K GWAS in Scandinavians. RESULTS— The strongest association (P = 1.07 × 10−5) was for rs2237457, which is located in growth factor receptor–bound protein 10 (Grb10), an adaptor protein that regulate insulin receptor signaling. rs2237457 was also strongly associated with OGTT glucose area under the curve in nondiabetic subjects (P = 0.001). Of the 1,093 SNPs associated with type 2 diabetes at P < 0.01, 67 SNPs demonstrated associations with at least one OGTT trait in nondiabetic individuals; 80 SNPs were nominally associated with type 2 diabetes in one of the three independent 100K GWASs, 3 SNPs (rs2540317 in MFSD9, rs10515353 on chromosome 5, and rs2242400 in BCAT1 were associated with type 2 diabetes in more than one population), and 11 SNPs were nominally associated with type 2 diabetes in Scandinavians. One type 2 diabetes–associated SNP (rs3845971, located in FHIT) showed replication with OGTT traits and also in another population. CONCLUSIONS— Our GWAS of type 2 diabetes identified several gene variants associated with type 2 diabetes, some of which are worthy of further study.


American Heart Journal | 2008

The genetic response to short-term interventions affecting cardiovascular function: Rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study

Braxton D. Mitchell; Patrick F. McArdle; Haiqing Shen; Evadnie Rampersaud; Toni I. Pollin; Lawrence F. Bielak; Julie A. Douglas; Marie Hélène Roy-Gagnon; Paul Sack; Rosalie Naglieri; Scott Hines; Richard B. Horenstein; Yen Pei C Chang; Wendy Post; Kathleen A. Ryan; Nga Hong Brereton; Ruth Pakyz; John D. Sorkin; Coleen M. Damcott; Jeffrey R. O'Connell; Charles Mangano; Mary C. Corretti; Robert A. Vogel; William R. Herzog; Matthew R. Weir; Patricia A. Peyser; Alan R. Shuldiner

BACKGROUND The etiology of cardiovascular disease (CVD) is multifactorial. Efforts to identify genes influencing CVD risk have met with limited success to date, likely because of the small effect sizes of common CVD risk alleles and the presence of gene by gene and gene by environment interactions. METHODS The HAPI Heart Study was initiated in 2002 to measure the cardiovascular response to 4 short-term interventions affecting cardiovascular risk factors and to identify the genetic and environmental determinants of these responses. The measurements included blood pressure responses to the cold pressor stress test and to a high salt diet, triglyceride excursion in response to a high-fat challenge, and response in platelet aggregation to aspirin therapy. RESULTS The interventions were carried out in 868 relatively healthy Amish adults from large families. The heritabilities of selected response traits for each intervention ranged from 8% to 38%, suggesting that some of the variation associated with response to each intervention can be attributed to the additive effects of genes. CONCLUSIONS Identifying these response genes may identify new mechanisms influencing CVD and may lead to individualized preventive strategies and improved early detection of high-risk individuals.


Environmental Health Perspectives | 2013

Exercise attenuates PCB-induced changes in the mouse gut microbiome.

Jeong June Choi; Sung Yong Eum; Evadnie Rampersaud; Sylvia Daunert; Maria T. Abreu; Michal Toborek

Background: The gut microbiome, a dynamic bacterial community that interacts with the host, is integral to human health because it regulates energy metabolism and immune functions. The gut microbiome may also play a role in risks from environmental toxicants. Objectives: We investigated the effects of polychlorinated biphenyls (PCBs) and exercise on the composition and structure of the gut microbiome in mice. Methods: After mice exercised voluntarily for 5 weeks, they were treated by oral gavage with a mixture of environmentally relevant PCB congeners (PCB153, PCB138, and PCB180; total PCB dose, 150 µmol/kg) for 2 days. We then assessed the microbiome by determination of 16S rRNA using microarray analysis. Results: Oral exposure to PCBs significantly altered the abundance of the gut microbiome in mice primarily by decreasing the levels of Proteobacteria. The activity level of the mice correlated with a substantial shift in abundance, biodiversity, and composition of the microbiome. Importantly, exercise attenuated PCB-induced changes in the gut microbiome. Conclusions: Our results show that oral exposure to PCBs can induce substantial changes in the gut microbiome, which may then influence their systemic toxicity. These changes can be attenuated by behavioral factors, such as voluntary exercise.


PLOS Genetics | 2013

Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci

Ching-Ti Liu; Keri L. Monda; Kira C. Taylor; Leslie A. Lange; Ellen W. Demerath; Walter Palmas; Mary K. Wojczynski; Jaclyn C. Ellis; Mara Z. Vitolins; Simin Liu; George J. Papanicolaou; Marguerite R. Irvin; Luting Xue; Paula J. Griffin; Michael A. Nalls; Adebowale Adeyemo; Jiankang Liu; Guo Li; Edward A. Ruiz-Narváez; Wei-Min Chen; Fang Chen; Brian E. Henderson; Robert C. Millikan; Christine B. Ambrosone; Sara S. Strom; Xiuqing Guo; Jeanette S. Andrews; Yan V. Sun; Thomas H. Mosley; Lisa R. Yanek

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.


Circulation-cardiovascular Genetics | 2012

Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era

Nadine Norton; Peggy D. Robertson; Mark J. Rieder; Stephan Züchner; Evadnie Rampersaud; Eden R. Martin; Duanxiang Li; Deborah A. Nickerson; Ray E. Hershberger

Background— Human exome sequencing is a recently developed tool to aid in the discovery of novel coding variants. Now broadly applied, exome sequencing data sets provide a novel opportunity to evaluate the allele frequencies of previously published pathogenic rare variants. Methods and Results— We examined the exome data set from the National Heart, Lung and Blood Institute Exome Sequencing Project and compared this data set with a catalog of 197 previously published rare variants reported as causative of dilated cardiomyopathy (DCM) from familial and sporadic cases. Of these 197, 33 (16.8%) were also present in the Exome Sequencing Project database, raising the question of whether they were uncommon polymorphisms. Supporting functional data has been published for 14 of the 33 (42%), suggesting they are unlikely to be false-positives. The frequencies of these functional variants in the Exome Sequencing Project data set ranged from 0.02 to 1.33% (median 0.04%), which when applied as a cutoff to filter variants in a DCM pedigree identified an additional DCM candidate gene. A greater proportion of sporadic DCM cases had variants that were present in the Exome Sequencing Project data set versus novel variants (ie, not in the Exome Sequencing Project; 44% versus 21%; P=0.002), suggesting some of the variants identified as disease causing in sporadic DCM are either false-positives or low penetrance alleles in human populations. Conclusions— Rare nonsynonymous variants identified in DCM subjects also present at very low frequencies in public databases are likely relevant for DCM. Allele frequencies >0.04% are of less certain pathogenicity, especially if identified in sporadic cases, although this cutoff should be viewed as preliminary.


Circulation-cardiovascular Genetics | 2013

Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy.

Nadine Norton; Duanxiang Li; Evadnie Rampersaud; Ana Morales; Eden R. Martin; Stephan Züchner; Shengru Guo; Michael Gonzalez; Dale J. Hedges; Peggy D. Robertson; Niklas Krumm; Deborah A. Nickerson; Ray E. Hershberger

Background—Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. Methods and Results—We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. Conclusions—These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing.


JAMA Internal Medicine | 2010

Familial Defective Apolipoprotein B-100 and Increased Low-Density Lipoprotein Cholesterol and Coronary Artery Calcification in the Old Order Amish

Haiqing Shen; Coleen M. Damcott; Evadnie Rampersaud; Toni I. Pollin; Richard B. Horenstein; Patrick F. McArdle; Patricia A. Peyser; Lawrence F. Bielak; Wendy S. Post; Yen-Pei C. Chang; Kathleen A. Ryan; Michael I. Miller; John A. Rumberger; Patrick F. Sheedy; John Shelton; Jeffrey R. O’Connell; Alan R. Shuldiner; Braxton D. Mitchell

BACKGROUND Elevated low-density lipoprotein cholesterol (LDL-C) levels are a major cardiovascular disease risk factor. Genetic factors are an important determinant of LDL-C levels. METHODS To identify single nucleotide polymorphisms associated with LDL-C and subclinical coronary atherosclerosis, we performed a genome-wide association study of LDL-C in 841 asymptomatic Amish individuals aged 20 to 80 years, with replication in a second sample of 663 Amish individuals. We also performed scanning for coronary artery calcification (CAC) in 1018 of these individuals. RESULTS From the initial genome-wide association study, a cluster of single nucleotide polymorphisms in the region of the apolipoprotein B-100 gene (APOB) was strongly associated with LDL-C levels (P < 10(-68)). Additional genotyping revealed the presence of R3500Q, the mutation responsible for familial defective apolipoprotein B-100, which was also strongly associated with LDL-C in the replication sample (P < 10(-36)). The R3500Q carrier frequency, previously reported to be 0.1% to 0.4% in white European individuals, was 12% in the combined sample of 1504 Amish participants, consistent with a founder effect. The mutation was also strongly associated with CAC in both samples (P < 10(-6) in both) and accounted for 26% and 7% of the variation in LDL-C levels and CAC, respectively. Compared with noncarriers, R3500Q carriers on average had LDL-C levels 58 mg/dL higher, a 4.41-fold higher odds (95% confidence interval, 2.69-7.21) of having detectable CAC, and a 9.28-fold higher odds (2.93-29.35) of having extensive CAC (CAC score ≥400). CONCLUSION The R3500Q mutation in APOB is a major determinant of LDL-C levels and CAC in the Amish.

Collaboration


Dive into the Evadnie Rampersaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge