Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan C. Palmer-Young is active.

Publication


Featured researches published by Evan C. Palmer-Young.


PLOS ONE | 2015

Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees

Olivia Masi Biller; Lynn S. Adler; Rebecca E. Irwin; Caitlin McAllister; Evan C. Palmer-Young

Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.


Scientific Reports | 2016

Bumble bee parasite strains vary in resistance to phytochemicals

Evan C. Palmer-Young; Philip C. Stevenson; Rebecca E. Irwin; Lynn S. Adler

Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.


PLOS ONE | 2015

The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses

Evan C. Palmer-Young; Daniel Veit; Jonathan Gershenzon; Meredith C. Schuman

Among the terpenes, isoprene (C5) and monoterpene hydrocarbons (C10) have been shown to ameliorate abiotic stress in a number of plant species via two proposed mechanisms: membrane stabilization and direct antioxidant effects. Sesquiterpene hydrocarbons (C15) not only share the structural properties thought to lend protective qualities to isoprene and monoterpene hydrocarbons, but also react rapidly with ozone, suggesting that sesquiterpenes may similarly enhance tolerance of abiotic stresses. To test whether sesquiterpenes protect plants against ozone, UVB light, or drought, we used transgenic lines of the wild tobacco Nicotiana attenuata. The transgenic plants expressed a maize terpene synthase gene (ZmTPS10) which produced a blend of (E)-ß-farnesene and (E)-α-bergamotene, or a point mutant of the same gene (ZmTPS10M) which produced (E)-ß-farnesene alone,. (E)-ß-farnesene exerted a local, external, and transient ozone-quenching effect in ozone-fumigated chambers, but we found no evidence that enhanced sesquiterpene production by the plant inhibited oxidative damage, or maintained photosynthetic function or plant fitness under acute or chronic stress. Although the sesquiterpenes (E)-ß-farnesene and (E)-α-bergamotene might confer benefits under intermittent heat stress, which was not tested, any roles in relieving abiotic stress may be secondary to their previously demonstrated functions in biotic interactions.


Plant Physiology | 2014

Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors

Meredith C. Schuman; Evan C. Palmer-Young; Axel Schmidt; Jonathan Gershenzon; Ian T. Baldwin

Plants expressing two sesquiterpene synthases emitted increased quantities of target volatiles without changes to other volatiles, defense, growth, or yield in transformants or neighboring plants. Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat.


Ecology and Evolution | 2017

Synergistic effects of floral phytochemicals against a bumble bee parasite

Evan C. Palmer-Young; Rebecca E. Irwin; Lynn S. Adler

Abstract Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.


F1000Research | 2015

Variable Effects of Nicotine, Anabasine, and their Interactions on Parasitized Bumble Bees

Lukas P. Thorburn; Lynn S. Adler; Rebecca E. Irwin; Evan C. Palmer-Young

Secondary metabolites in floral nectar have been shown to reduce parasite load in two common bumble bee species. Previous studies on the effects of nectar secondary metabolites on parasitized bees have focused on single compounds in isolation; however, in nature, bees are simultaneously exposed to multiple compounds. We tested for interactions between the effects of two alkaloids found in the nectar of Nicotiana spp. plants, nicotine and anabasine, on parasite load and mortality in bumble bees ( Bombus impatiens) infected with the intestinal parasite Crithidia bombi. Adult worker bees inoculated with C. bombi were fed nicotine and anabasine diet treatments in a factorial design, resulting in four nectar treatment combinations: 2 ppm nicotine, 5 ppm anabasine, 2ppm nicotine and 5 ppm anabasine together, or a control alkaloid-free solution. We conducted the experiment twice: first, with bees incubated under variable environmental conditions (‘Variable’; temperatures varied from 10-35°C with ambient lighting); and second, under carefully controlled environmental conditions (‘Stable’; 27°C incubator, constant darkness). In ‘Variable’, each alkaloid alone significantly decreased parasite loads, but this effect was not realized with the alkaloids in combination, suggesting an antagonistic interaction. Nicotine but not anabasine significantly increased mortality, and the two compounds had no interactive effects on mortality. In ‘Stable’, nicotine significantly increased parasite loads, the opposite of its effect in ‘Variable’. While not significant, the relationship between anabasine and parasite loads was also positive. Interactive effects between the two alkaloids on parasite load were non-significant, but the pattern of antagonistic interaction was similar to that in the variable experiment. Neither alkaloid, nor their interaction, significantly affected mortality under controlled conditions. Our results do not indicate synergy between Nicotiana nectar alkaloids; however, they do suggest a complex interaction between secondary metabolites, parasites, and environmental variables, in which secondary metabolites can be either toxic or medicinal depending on context.


PLOS ONE | 2015

Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees

Winston E. Anthony; Evan C. Palmer-Young; Anne S. Leonard; Rebecca E. Irwin; Lynn S. Adler

The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.


Journal of Evolutionary Biology | 2017

Evolution of resistance to single and combined floral phytochemicals by a bumble bee parasite

Evan C. Palmer-Young; Lynn S. Adler

Repeated exposure to inhibitory compounds can drive the evolution of resistance, which weakens chemical defence against antagonists. Floral phytochemicals in nectar and pollen have antimicrobial properties that can ameliorate infection in pollinators, but evolved resistance among parasites could diminish the medicinal efficacy of phytochemicals. However, multicompound blends, which occur in nectar and pollen, present simultaneous chemical challenges that may slow resistance evolution. We assessed evolution of resistance by the common bumble bee gut parasite Crithidia bombi to two floral phytochemicals, singly and combined, over 6 weeks (~100 generations) of chronic exposure. Resistance of C. bombi increased under single and combined phytochemical exposure, without any associated costs of reduced growth under phytochemical‐free conditions. After 6 weeks’ exposure, phytochemical concentrations that initially inhibited growth by > 50%, and exceeded concentrations in floral nectar, had minimal effects on evolved parasite lines. Unexpectedly, the phytochemical combination did not impede resistance evolution compared to single compounds. These results demonstrate that repeated phytochemical exposure, which could occur in homogeneous floral landscapes or with therapeutic phytochemical treatment of managed hives, can cause rapid evolution of resistance in pollinator parasites. We discuss possible explanations for submaximal phytochemical resistance in natural populations. Evolved resistance could diminish the antiparasitic value of phytochemical ingestion, weakening an important natural defence against infection.


Journal of Economic Entomology | 2017

Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection

Evan C. Palmer-Young; Cansu Ö Tozkar; Ryan S. Schwarz; Yanping Chen; Rebecca E. Irwin; Lynn S. Adler; Jay D. Evans

Abstract Parasites and pathogens are implicated in honey bee colony losses, and honey bees may also spread infection to wild pollinators. Bees consume nectar and pollen, which contain phytochemicals that can positively or negatively affect pollinator health. Certain phytochemicals can reduce parasite loads in humans and other animals. Understanding how phytochemicals affect honey bee infection and survival could help identify optimal forage sources and phytochemical treatments to ameliorate disease. We fed honey bees seven dietary phytochemicals to evaluate whether phytochemical consumption would treat preexisting infection in mature bees, or mitigate infection in young bees either inside or outside of their colonies. Phytochemicals were generally well-tolerated at levels documented in nectar, honey, and pollen, although clove oil and thymol increased mortality at high doses. Six of seven tested phytochemicals significantly increased antimicrobial peptide expression by 12.9 to 61-fold in older bees after 7 d consumption. Short-term (<24 h) phytochemical consumption reduced levels of Deformed wing virus (DWV) up to 500-fold in young bees released into field colonies. However, with the exception of high-dose clove oil, our phytochemical treatments did not alter infection with Lotmaria passim or Nosema ceranae. Phytochemicals also lacked antiviral effects for pollen-deprived bees reared outside the colony. Our results suggest that phytochemicals have potential therapeutic value for honey bees infected with DWV. Short-term phytochemical consumption may be sufficient to confer benefits against infection. Phytochemical concentrations that reduced disease were comparable with naturally occurring floral concentrations, suggesting that flowers could serve as seasonally varied, serially consumed pollinator medicines.


PLOS ONE | 2017

Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees

Evan C. Palmer-Young; Alison Hogeboom; Alexander J. Kaye; Dash Donnelly; Jonathan Andicoechea; Sara June Connon; Ian Weston; Kimberly Skyrm; Rebecca E. Irwin; Lynn S. Adler

Background Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. Approach Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. Results We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced—rather than increased—phytochemical consumption relative to uninfected bees. Conclusions Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.

Collaboration


Dive into the Evan C. Palmer-Young's collaboration.

Top Co-Authors

Avatar

Lynn S. Adler

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Rebecca E. Irwin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas P. Thorburn

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne L. Averill

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge