Evan Crocker
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evan Crocker.
Biophysical Journal | 2002
Steven O. Smith; Markus Eilers; David Song; Evan Crocker; Weiwen Ying; Michel Groesbeek; Guenter Metz; Martine Ziliox; Saburo Aimoto
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35 degrees. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-A distance between the gamma-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the chi1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 A) of the Thr-87 gamma-methyl group with the backbone nitrogen of Ile-88 across the dimer interface. The short interhelical distance places the beta-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.
Journal of Biological Chemistry | 2009
Shivani Ahuja; Evan Crocker; Markus Eilers; Viktor Hornak; Amiram Hirshfeld; Martine Ziliox; Natalie Syrett; Philip J. Reeves; H. Gobind Khorana; Mordechai Sheves; Steven O. Smith
Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific 13C-labeled sites located on the β-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly188 (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the β-ionone ring moves to a position between Met207 and Phe208 on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cϵ carbons of Lys296 (H7) and Met44 (H1) and between Gly121 (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu122 (H3) and His211 (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.
Biophysical Journal | 2003
Wei Liu; Evan Crocker; David J. Siminovitch; Steven O. Smith
Dimerization of the transmembrane domain of glycophorin A is mediated by a seven residue motif LIxxGVxxGVxxT through a combination of van der Waals and hydrogen bonding interactions. One of the unusual features of the motif is the large number of beta-branched amino acids that may limit the entropic cost of dimerization by restricting side-chain motion in the monomeric transmembrane helix. Deuterium NMR spectroscopy is used to characterize the dynamics of fully deuterated Val80 and Val84, two essential amino acids of the dimerization motif. Deuterium spectra of the glycophorin A transmembrane dimer were obtained using synthetic peptides corresponding to the transmembrane sequence containing either perdeuterated Val80 or Val84. These data were compared with spectra of monomeric glycophorin A peptides deuterated at Val84. In all cases, the deuterium line shapes are characterized by fast methyl group rotation with virtually no motion about the C(alpha)-C(beta) bond. This is consistent with restriction of the side chain in both the monomer and dimer due to intrahelical packing interactions involving the beta-methyl groups, and indicates that there is no energy cost associated with dimerization due to loss of conformational entropy. In contrast, deuterium NMR spectra of Met81 and Val82, in the lipid interface, reflected greater motional averaging and fast exchange between different side-chain conformers.
Protein Science | 2005
Kathleen P. Howard; Wei Liu; Evan Crocker; Vikas Nanda; James D. Lear; William F. DeGrado; Steven O. Smith
A peptide designed to form a homo‐oligomeric transmembrane helical bundle was reconstituted into lipid bilayers and studied by using 2H NMR (nuclear magnetic resonance) with magic angle spinning to confirm that the helical interface corresponds to the interface intended in the design. The peptide belongs to a family of model peptides derived from a membrane‐solubilized version of the water‐soluble coiled‐coil GCN4‐P1. The variant studied here contains two asparagines thought to engage in interhelical hydrogen bonding critical to the formation of a stable trimer. For the NMR studies, three different peptides were synthesized, each with one of three consecutive leucines in the transmembrane region deuterium labeled. Prior to NMR data collection, polarized infrared spectroscopy was used to establish that the peptides were reconstituted in lipid bilayers in a transmembrane helical conformation. The 2H NMR line shapes of the three different peptides are consistent with a trimer structure formed by the designed peptide that is stabilized by inter‐helical hydrogen bonding of asparagines at positions 7 and 14.
Journal of Molecular Biology | 2006
Evan Crocker; Markus Eilers; Shivani Ahuja; Viktor Hornak; Amiram Hirshfeld; Mordechai Sheves; Steven O. Smith
Proceedings of the National Academy of Sciences of the United States of America | 2004
Ashish B. Patel; Evan Crocker; Markus Eilers; Amiram Hirshfeld; Mordechai Sheves; Steven O. Smith
Journal of Biological Chemistry | 2003
Wenyi Zhang; Evan Crocker; Stuart McLaughlin; Steven O. Smith
Journal of Molecular Biology | 2005
Ashish B. Patel; Evan Crocker; Philip J. Reeves; Getmanova Ev; Markus Eilers; H. Gobind Khorana; Steven O. Smith
Journal of Biomolecular NMR | 2004
Evan Crocker; Ashish B. Patel; Markus Eilers; Shobini Jayaraman; Getmanova Ev; Philip J. Reeves; Martine Ziliox; H. Gobind Khorana; Mordechai Sheves; Steven O. Smith
Biochemistry | 2005
Wei Liu; Evan Crocker; Wenyi Zhang; James I. Elliott; Burkhard Luy; Huilin Li; Saburo Aimoto; Steven O. Smith