Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan J. Lipson is active.

Publication


Featured researches published by Evan J. Lipson.


Science Translational Medicine | 2014

Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

Chetan Bettegowda; Mark Sausen; Rebecca J. Leary; Isaac Kinde; Yuxuan Wang; Nishant Agrawal; Bjarne Bartlett; Hao Wang; Brandon Luber; Rhoda M. Alani; Emmanuel S. Antonarakis; Nilofer Saba Azad; Alberto Bardelli; Henry Brem; John L. Cameron; Clarence Lee; Leslie A. Fecher; Gary L. Gallia; Peter Gibbs; Dung Le; Robert L. Giuntoli; Michael Goggins; Michael D. Hogarty; Matthias Holdhoff; Seung-Mo Hong; Yuchen Jiao; Hartmut H. Juhl; Jenny J. Kim; Giulia Siravegna; Daniel A. Laheru

Circulating tumor DNA can be used in a variety of clinical and investigational settings across tumor types and stages for screening, diagnosis, and identifying mutations responsible for therapeutic response and drug resistance. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential investigational and clinical applications of this novel technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.


Journal of Clinical Oncology | 2014

Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab

Suzanne L. Topalian; Mario Sznol; David F. McDermott; Harriet M. Kluger; Richard D. Carvajal; William H. Sharfman; Julie R. Brahmer; Donald P. Lawrence; Michael B. Atkins; John D. Powderly; Philip D. Leming; Evan J. Lipson; Igor Puzanov; David C. Smith; Janis M. Taube; Jon M. Wigginton; Georgia Kollia; Ashok Kumar Gupta; Drew M. Pardoll; Jeffrey A. Sosman; F. Stephen Hodi

PURPOSE Programmed cell death 1 (PD-1) is an inhibitory receptor expressed by activated T cells that downmodulates effector functions and limits the generation of immune memory. PD-1 blockade can mediate tumor regression in a substantial proportion of patients with melanoma, but it is not known whether this is associated with extended survival or maintenance of response after treatment is discontinued. PATIENTS AND METHODS Patients with advanced melanoma (N = 107) enrolled between 2008 and 2012 received intravenous nivolumab in an outpatient setting every 2 weeks for up to 96 weeks and were observed for overall survival, long-term safety, and response duration after treatment discontinuation. RESULTS Median overall survival in nivolumab-treated patients (62% with two to five prior systemic therapies) was 16.8 months, and 1- and 2-year survival rates were 62% and 43%, respectively. Among 33 patients with objective tumor regressions (31%), the Kaplan-Meier estimated median response duration was 2 years. Seventeen patients discontinued therapy for reasons other than disease progression, and 12 (71%) of 17 maintained responses off-therapy for at least 16 weeks (range, 16 to 56+ weeks). Objective response and toxicity rates were similar to those reported previously; in an extended analysis of all 306 patients treated on this trial (including those with other cancer types), exposure-adjusted toxicity rates were not cumulative. CONCLUSION Overall survival following nivolumab treatment in patients with advanced treatment-refractory melanoma compares favorably with that in literature studies of similar patient populations. Responses were durable and persisted after drug discontinuation. Long-term safety was acceptable. Ongoing randomized clinical trials will further assess the impact of nivolumab therapy on overall survival in patients with metastatic melanoma.


Clinical Cancer Research | 2013

Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody

Evan J. Lipson; William H. Sharfman; Charles G. Drake; Ira Wollner; Janis M. Taube; Robert A. Anders; Haiying Xu; Sheng Yao; Alice Pons; Lieping Chen; Drew M. Pardoll; Julie R. Brahmer; Suzanne L. Topalian

Purpose: Results from the first-in-human phase I trial of the anti–programmed death-1 (PD-1) antibody BMS-936558 in patients with treatment-refractory solid tumors, including safety, tolerability, pharmacodynamics, and immunologic correlates, have been previously reported. Here, we provide long-term follow-up on three patients from that trial who sustained objective tumor regressions off therapy, and test the hypothesis that reinduction therapy for late tumor recurrence can be effective. Experimental Design: Three patients with colorectal cancer, renal cell cancer, and melanoma achieved objective responses on an intermittent dosing regimen of BMS-936558. Following cessation of therapy, patients were followed for more than 3 years. A patient with melanoma who experienced a prolonged partial regression followed by tumor recurrence received reinduction therapy. Results: A patient with colorectal cancer experienced a complete response, which is ongoing after 3 years. A patient with renal cell cancer experienced a partial response lasting 3 years off therapy, which converted to a complete response, which is ongoing at 12 months. A patient with melanoma achieved a partial response that was stable for 16 months off therapy; recurrent disease was successfully treated with reinduction anti-PD-1 therapy. Conclusion: These data represent the most prolonged observation to date of patients with solid tumors responding to anti-PD-1 immunotherapy and the first report of successful reinduction therapy following delayed tumor progression. They underscore the potential for immune checkpoint blockade with anti-PD-1 to reset the equilibrium between tumor and the host immune system. Clin Cancer Res; 19(2); 462–8. ©2012 AACR.


The New England Journal of Medicine | 2016

PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma

Paul Nghiem; Shailender Bhatia; Evan J. Lipson; Ragini R. Kudchadkar; Natalie J. Miller; Lakshmanan Annamalai; Sneha Berry; Elliot Chartash; Adil Daud; Steven P. Fling; Philip Friedlander; Harriet M. Kluger; Holbrook Kohrt; Lisa Lundgren; Kim Margolin; Alan Mitchell; Thomas Olencki; Drew M. Pardoll; Sunil Reddy; Erica Shantha; William H. Sharfman; Elad Sharon; Lynn R. Shemanski; Michi M. Shinohara; Joel C. Sunshine; Janis M. Taube; John A. Thompson; Steven M. Townson; Jennifer H. Yearley; Suzanne L. Topalian

BACKGROUND Merkel-cell carcinoma is an aggressive skin cancer that is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus (MCPyV). Advanced Merkel-cell carcinoma often responds to chemotherapy, but responses are transient. Blocking the programmed death 1 (PD-1) immune inhibitory pathway is of interest, because these tumors often express PD-L1, and MCPyV-specific T cells express PD-1. METHODS In this multicenter, phase 2, noncontrolled study, we assigned adults with advanced Merkel-cell carcinoma who had received no previous systemic therapy to receive pembrolizumab (anti-PD-1) at a dose of 2 mg per kilogram of body weight every 3 weeks. The primary end point was the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1. Efficacy was correlated with tumor viral status, as assessed by serologic and immunohistochemical testing. RESULTS A total of 26 patients received at least one dose of pembrolizumab. The objective response rate among the 25 patients with at least one evaluation during treatment was 56% (95% confidence interval [CI], 35 to 76); 4 patients had a complete response, and 10 had a partial response. With a median follow-up of 33 weeks (range, 7 to 53), relapses occurred in 2 of the 14 patients who had had a response (14%). The response duration ranged from at least 2.2 months to at least 9.7 months. The rate of progression-free survival at 6 months was 67% (95% CI, 49 to 86). A total of 17 of the 26 patients (65%) had virus-positive tumors. The response rate was 62% among patients with MCPyV-positive tumors (10 of 16 patients) and 44% among those with virus-negative tumors (4 of 9 patients). Drug-related grade 3 or 4 adverse events occurred in 15% of the patients. CONCLUSIONS In this study, first-line therapy with pembrolizumab in patients with advanced Merkel-cell carcinoma was associated with an objective response rate of 56%. Responses were observed in patients with virus-positive tumors and those with virus-negative tumors. (Funded by the National Cancer Institute and Merck; ClinicalTrials.gov number, NCT02267603.).


eLife | 2013

Evolutionary dynamics of cancer in response to targeted combination therapy

Ivana Bozic; Johannes G. Reiter; Benjamin Allen; Tibor Antal; Krishnendu Chatterjee; Preya Shah; Yo Sup Moon; Amin Yaqubie; Nicole Kelly; Dung T. Le; Evan J. Lipson; Paul B. Chapman; Luis A. Diaz; Bert Vogelstein; Martin A. Nowak

In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. DOI: http://dx.doi.org/10.7554/eLife.00747.001


Clinical Cancer Research | 2011

Ipilimumab: An Anti-CTLA-4 Antibody for Metastatic Melanoma

Evan J. Lipson; Charles G. Drake

Ipilimumab (MDX-010, Yervoy; Bristol-Myers Squibb), a fully human monoclonal antibody against CTL antigen 4 (CTLA-4), was recently approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic melanoma. In both early- and late-phase trials, ipilimumab has shown consistent activity against melanoma. For example, in a randomized phase III trial that enrolled patients with previously treated metastatic disease, ipilimumab, with or without a peptide vaccine, improved overall survival: Median overall survival was 10.1 and 10.0 months in the ipilimumab and ipilimumab plus vaccine arms, respectively, versus 6.4 months in the vaccine-alone group (hazard ratio, 0.68; P ≤ 0.003). Serious (grade 3–5) immune-related adverse events occurred in 10% to 15% of patients. Thus, although it provides a clear survival benefit, ipilimumab administration requires careful patient monitoring and sometimes necessitates treatment with immune-suppressive therapy. Here, we review the mechanism of action, preclinical data, and multiple clinical trials that led to FDA approval of ipilimumab for metastatic melanoma. Clin Cancer Res; 17(22); 6958–62. ©2011 AACR.


Nature Reviews Clinical Oncology | 2014

Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer

Charles G. Drake; Evan J. Lipson; Julie R. Brahmer

Previously, clinical approaches to using the immune system against cancer focused on vaccines that intended to specifically initiate or amplify a host response against evolving tumours. Although vaccine approaches have had some clinical success, most cancer vaccines fail to induce objective tumour shrinkage in patients. More-recent approaches have centred on a series of molecules known as immune checkpoints—whose natural function is to restrain or dampen a potentially over-exuberant response. Blocking immune checkpoint molecules with monoclonal antibodies has emerged as a viable clinical strategy that mediates tumour shrinkage in several cancer types. In addition to being part of the current treatment armamentarium for metastatic melanoma, immune checkpoint blockade is currently undergoing phase III testing in several cancer types.


Cancer immunology research | 2013

PD-L1 Expression in the Merkel Cell Carcinoma Microenvironment: Association with Inflammation, Merkel Cell Polyomavirus, and Overall Survival

Evan J. Lipson; Jeremy G. Vincent; Myriam Loyo; Luciane T. Kagohara; Brandon Luber; Hao Wang; Haiying Xu; Suresh K. Nayar; Timothy S. Wang; David Sidransky; Robert A. Anders; Suzanne L. Topalian; Janis M. Taube

Using paraffin-embedded specimens from 49 patients diagnosed with various stages of Merkel cell carcinoma (MCC), Lipson and colleagues found PD-L1 expression in approximately 50% of these rare tumors. PD-L1+ carcinomas were invariably associated with immune infiltrates and the presence of Merkel cell polyomavirus DNA. These findings suggest that an endogenous immune response, perhaps directed in part to MCC-related antigen, promotes PD-L1 expression in the tumor microenvironment and provide a rationale for investigating therapies blocking PD-1/PD-L1 for patients with MCC. Merkel cell carcinoma (MCC) is a lethal, virus-associated cancer that lacks effective therapies for advanced disease. Agents blocking the PD-1/PD-L1 pathway have shown objective, durable tumor regressions in patients with advanced solid malignancies and efficacy has been linked to PD-L1 expression in the tumor microenvironment. To investigate whether MCC might be a target for PD-1/PD-L1 blockade, we examined MCC PD-L1 expression, its association with tumor-infiltrating lymphocytes (TIL), Merkel cell polyomavirus (MCPyV), and overall survival. Sixty-seven MCC specimens from 49 patients were assessed with immunohistochemistry for PD-L1 expression by tumor cells and TILs, and immune infiltrates were characterized phenotypically. Tumor cell and TIL PD-L1 expression were observed in 49% and 55% of patients, respectively. In specimens with PD-L1(+) tumor cells, 97% (28/29) showed a geographic association with immune infiltrates. Among specimens with moderate-severe TIL intensities, 100% (29/29) showed PD-L1 expression by tumor cells. Significant associations were also observed between the presence of MCPyV DNA, a brisk inflammatory response, and tumor cell PD-L1 expression: MCPyV(-) tumor cells were uniformly PD-L1(-). Taken together, these findings suggest that a local tumor-specific and potentially MCPyV-specific immune response drives tumor PD-L1 expression, similar to previous observations in melanoma and head and neck squamous cell carcinomas. In multivariate analyses, PD-L1(-) MCCs were independently associated with worse overall survival [HR 3.12; 95% confidence interval, 1.28–7.61; P = 0.012]. These findings suggest that an endogenous immune response promotes PD-L1 expression in the MCC microenvironment when MCPyV is present, and provide a rationale for investigating therapies blocking PD-1/PD-L1 for patients with MCC. Cancer Immunol Res; 1(1); 54–63. ©2013 AACR.


The New England Journal of Medicine | 2016

Tumor Regression and Allograft Rejection after Administration of Anti–PD-1

Evan J. Lipson; Serena M. Bagnasco; Jack Moore; Sekwon Jang; Manisha J. Patel; Andrea A. Zachary; Drew M. Pardoll; Janis M. Taube; Charles G. Drake

Cancers, especially skin cancers, may develop in patients undergoing solid-organ transplantation who receive long-term immunosuppression. The use of anti–PD-1 in one such patient produced an antitumor response but led to rejection of the transplanted kidney.


Journal for ImmunoTherapy of Cancer | 2016

Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy

Lucie Heinzerling; Patrick A. Ott; F. Stephen Hodi; Aliya N. Husain; Azadeh Tajmir-Riahi; Hussein Tawbi; Matthias Pauschinger; Thomas F. Gajewski; Evan J. Lipson; Jason J. Luke

Immune-checkpoint blocking antibodies have demonstrated objective antitumor responses in multiple tumor types including melanoma, non-small cell lung cancer (NSCLC), and renal cell cancer (RCC). In melanoma, an increase in overall survival has been demonstrated with anti-CTLA-4 and PD-1 inhibition. However, a plethora of immune-mediated adverse events has been reported with these agents. Immune-mediated cardiotoxicity induced by checkpoint inhibitors has been reported in single cases with variable presentation, including myocarditis and pericarditis.Among six clinical cancer centers with substantial experience in the administration of immune-checkpoint blocking antibodies, eight cases of immune-related cardiotoxicity after ipilimumab and/or nivolumab/pembrolizumab were identified. Diagnostic findings, treatment and follow-up are reported. A large variety of cardiotoxic events with manifestations such as heart failure, cardiomyopathy, heart block, myocardial fibrosis and myocarditis was documented.This is the largest case series to date describing cardiotoxicity of immune-checkpoint blocking antibodies. Awareness, monitoring of patients with pre-existing cardiac disorders and prompt evaluation by the treatment team is essential. Treatment including application of steroids is critical for patient safety.

Collaboration


Dive into the Evan J. Lipson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janis M. Taube

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiying Xu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Drew M. Pardoll

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge