Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan Richardson is active.

Publication


Featured researches published by Evan Richardson.


Ecological Applications | 2015

Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline

Jeffrey F. Bromaghin; Trent L. McDonald; Ian Stirling; Andrew E. Derocher; Evan Richardson; Eric V. Regehr; David C. Douglas; George M. Durner; Todd C. Atwood; Steven C. Amstrup

In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.


Polar Biology | 2009

Fasting physiology of polar bears in relation to environmental change and breeding behavior in the Beaufort Sea.

Seth G. Cherry; Andrew E. Derocher; Ian Stirling; Evan Richardson

We examined the use of the ratio of serum urea to serum creatinine as a physiological biomarker of fasting to monitor temporal patterns in the feeding ecology of polar bears (Ursus maritimus). Blood was collected from 436 polar bears in the eastern Beaufort Sea during April and May of 1985–1986 and 2005–2006. The proportions of polar bears fasting were 9.6% in 1985, 10.5% in 1986, 21.4% in 2005, and 29.3% in 2006. We used stepwise logistic regression analysis to evaluate factors that could influence the binary response variable of fasting or not fasting. Significant predictor variables of fasting were: the 2005 and 2006 capture years, solitary adult male bears, and adult male bears that were accompanying an estrous female. The increased number of polar bears in a physiological fasting state from all sex, age, and reproductive classes in 2005 and 2006 corresponded with broad scale changes in Arctic sea ice composition, which may have affected prey availability. The higher proportion of adult males fasting from all years was attributed to spring breeding behavior.


PLOS ONE | 2012

Age and Sex Composition of Seals Killed by Polar Bears in the Eastern Beaufort Sea

Nicholas W. Pilfold; Andrew E. Derocher; Ian Stirling; Evan Richardson; Dennis Andriashek

Background Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n = 650) and hunting attempts on ringed seal (Pusa hispida) lairs (n = 1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985–2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation. Principal Findings Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007–2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n = 78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r2 = 0.30, P = 0.04), but was not correlated with the number of adult kills (P = 0.37). Conclusions/Significance Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.


Ecological Applications | 2011

Polar bear population status in the northern Beaufort Sea, Canada, 1971—2006

Ian Stirling; Trent L. McDonald; Evan Richardson; Eric V. Regehr; Steven C. Amstrup

Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture-recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2-4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 +/- 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (< 300 m water depth) has declined over the 35-year period of this study. If the climate continues to warm as predicted, we predict that the polar bear population in the northern Beaufort Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to adapt.


Environmental Science & Technology | 2011

Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

Vincent L. St. Louis; Andrew E. Derocher; Ian Stirling; Jennifer A. Graydon; Caroline Lee; Erin Jocksch; Evan Richardson; Sarah Ghorpade; Alvin K. Kwan; Jane L. Kirk; Igor Lehnherr; Heidi K. Swanson

Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western coast of HB.


Administrative Report | 2007

Polar bear population status in southern Hudson Bay, Canada

Martyn E. Obbard; Trent L. McDonald; Eric J. Howe; Eric V. Regehr; Evan Richardson

5 Introduction 5 Methods and Materials 3 Study Area 3 Capture Methods 4 Capture-recapture analysis 5 Goodness-of-fit 6 Covariates 6 Model selection 8 Parameter estimates 8 Results 9 Captures 9 Goodness of fit 9 Model selection 9 Survival Estimates 10 Abundance Estimates 11 Discussion 11 Interpretation of Parameter Estimates 11 Survival 12 Population size and trend 12 Future trend 14 Acknowledgments 14 References Cited 15


Ecography | 2017

Migratory response of polar bears to sea ice loss: to swim or not to swim

Nicholas W. Pilfold; Alysa G. McCall; Andrew E. Derocher; Nicholas J. Lunn; Evan Richardson

&NA; Migratory responses to climate change may vary across and within populations, particularly for species with large geographic ranges. An increase in the frequency of long‐distance swims (> 50 km) is one predicted consequence of climate change for polar bears Ursus maritimus. We examined GPS satellite‐linked telemetry records of 58 adult females and 18 subadults from the Beaufort Sea (BS), and 59 adult females from Hudson Bay (HB), for evidence of long‐distance swimming during seasonal migrations in 2007–2012. We identified 115 swims across both populations. Median swim duration was 3.4 d (range 1.3–9.3 d) and median swim distance was 92 km (range 51–404 km). Swims were significantly more frequent in the BS (n = 100) than HB (n = 15). In the BS, subadults swam as frequently as lone adult females, but more frequently than adult females with offspring. We modelled the likelihood of a polar bear engaging in swims using collar data from the BS. Swims were more likely for polar bears without offspring, with the distance of the pack ice edge from land, the rate at which the pack ice edge retreated, and the mean daily rate of open water gain between June–August. Coupled with an earlier study, the yearly proportions of BS adult females swimming in 2004–2012 were positively associated with the rate of open water gain. Results corroborate the hypothesis that long‐distance swimming by polar bears is likely to occur more frequently as sea ice conditions change due to climate warming. However, results also suggest that the magnitude of the effect likely varies within and between populations.


Journal of Wildlife Management | 2011

Temporal Change in the Morphometry-Body Mass Relationship of Polar Bears

Gregory W. Thiemann; Nicholas J. Lunn; Evan Richardson; Dennis Andriashek

ABSTRACT Accurate information on animal body mass is often an essential component of wildlife research and management. However, for many large-bodied species, obtaining direct scale weights from individuals may be difficult. In these cases, morphometric equations (e.g., based on girth or length) may provide accurate and precise estimates of body mass. We developed predictive equations to estimate the body mass of free-ranging polar bears (Ursus maritimus) in western Hudson Bay, Canada. Using multiple linear and non-linear regression, we identified a strong relationship between polar bear body weight and linear measures of straight line length and axillary girth. The mass—morphometry relationship appeared to change over time and we developed separate equations for polar bears measured during 2 time periods, 1980–1996 and 2007–2009. Non-linear models were more accurate and provided body mass estimates within 5.8% (R2= 0.98) and 6.1% (R2= 0.98) of scale weight in the earlier and later time periods, respectively. Earlier equations developed for polar bears in this subpopulation performed poorly when applied to recently sampled individuals. In contrast, some contemporary equations from other regions performed reasonably well, suggesting that temporal changes within a subpopulation may be more pronounced than regional differences and can render earlier predictive equations obsolete. Our results have important implications for current and future studies of polar bear body condition and the effects of ongoing climate warming.


Global Change Biology | 2017

Increased Arctic sea ice drift alters adult female polar bear movements and energetics

George M. Durner; David C. Douglas; Shannon E. Albeke; John P. Whiteman; Steven C. Amstrup; Evan Richardson; Ryan R. Wilson; Merav Ben-David

Abstract Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio‐tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.


Physiological and Biochemical Zoology | 2016

Mass Loss Rates of Fasting Polar Bears

Nicholas W. Pilfold; Daryll Hedman; Ian Stirling; Andrew E. Derocher; Nicholas J. Lunn; Evan Richardson

Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009–2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%–63% of subadults and 18%–24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

Collaboration


Dive into the Evan Richardson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric V. Regehr

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven C. Amstrup

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyn E. Obbard

Ontario Ministry of Natural Resources

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge