Evandro Fei Fang
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evandro Fei Fang.
Cell | 2014
Evandro Fei Fang; Morten Scheibye-Knudsen; Lear E. Brace; Henok Kassahun; Tanima SenGupta; Hilde Nilsen; James R. Mitchell; Deborah L. Croteau; Vilhelm A. Bohr
Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.
Cell Metabolism | 2014
Morten Scheibye-Knudsen; Sarah J. Mitchell; Evandro Fei Fang; Teruaki Iyama; Theresa M. Ward; James Wang; Christopher Dunn; Nagendra S. Singh; Sebastian Veith; Mahdi Hasan-Olive; Aswin Mangerich; Mark A. Wilson; Mark P. Mattson; Linda H. Bergersen; Victoria C. Cogger; Alessandra Warren; David G. Le Couteur; Ruin Moaddel; David M. Wilson; Deborah L. Croteau; Rafael de Cabo; Vilhelm A. Bohr
Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in genes encoding the DNA repair proteins CS group A or B (CSA or CSB). Since dietary interventions can alter neurodegenerative processes, Csb(m/m) mice were given a high-fat, caloric-restricted, or resveratrol-supplemented diet. High-fat feeding rescued the metabolic, transcriptomic, and behavioral phenotypes of Csb(m/m) mice. Furthermore, premature aging in CS mice, nematodes, and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high-fat diet, and β-hydroxybutyrate, PARP inhibition, or NAD(+) supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB can displace activated PARP1 from damaged DNA to limit its activity. This study connects two emerging longevity metabolites, β-hydroxybutyrate and NAD(+), through the deacetylase SIRT1 and suggests possible interventions for CS.
Trends in Cell Biology | 2015
Morten Scheibye-Knudsen; Evandro Fei Fang; Deborah L. Croteau; David M. Wilson; Vilhelm A. Bohr
Mitochondria are the oxygen-consuming power plants of cells. They provide a critical milieu for the synthesis of many essential molecules and allow for highly efficient energy production through oxidative phosphorylation. The use of oxygen is, however, a double-edged sword that on the one hand supplies ATP for cellular survival, and on the other leads to the formation of damaging reactive oxygen species (ROS). Different quality control pathways maintain mitochondria function including mitochondrial DNA (mtDNA) replication and repair, fusion-fission dynamics, free radical scavenging, and mitophagy. Further, failure of these pathways may lead to human disease. We review these pathways and propose a strategy towards a treatment for these often untreatable disorders.
Applied Microbiology and Biotechnology | 2010
Jack Ho Wong; T.B. Ng; Randy Chi Fai Cheung; Xiu Juan Ye; H.X. Wang; Sze-Kwan Lam; Peng Lin; Yau-Sang Chan; Evandro Fei Fang; Patrick H.K. Ngai; Li Xin Xia; Xiuyun Ye; Y. Jiang; F. Liu
Living organisms produce a myriad of molecules to protect themselves from fungal pathogens. This review focuses on antifungal proteins from plants and mushrooms, many of which are components of the human diet or have medicinal value. Plant antifungal proteins can be classified into different groups comprising chitinases and chitinase-like proteins, chitin-binding proteins, cyclophilin-like proteins, defensins and defensin-like proteins, deoxyribonucleases, embryo-abundant protein-like proteins, glucanases, lectins, lipid transfer proteins, peroxidases, protease inhibitors, ribonucleases, ribosome-inactivating proteins, storage 2S albumins, and thaumatin-like proteins. Some of the aforementioned antifungal proteins also exhibit mitogenic activity towards spleen cells, nitric oxide inducing activity toward macrophages, antiproliferative activity toward tumor cells, antibacterial activity, and inhibitory activity toward HIV-1 reverse transcriptase. In contrast to the large diversity of plant antifungal proteins, only a small number of mushroom antifungal proteins have been reported. Mushroom antifungal proteins are distinct from their plant counterparts in N-terminal sequence. Nevertheless, some of the mushroom antifungal proteins have been shown to inhibit HIV-1 reverse transcriptase activity and tumor cell proliferation.
Biochimica et Biophysica Acta | 2011
Evandro Fei Fang; Tzi Bun Ng
Ribonucleases (RNases) are a type of nucleases that catalyze the degradation of RNA into smaller components. They exist in a wide range of life forms from prokaryotes to eukaryotes. RNase-controlled RNA degradation is a determining factor in the control of gene expression, maturation and turnover, which are further associated with the progression of cancers and infectious diseases. Over the years, RNases purified from multiple origins have drawn increasing attention from medical scientists due to their remarkable antitumor properties. In this review, we present a brief summary of the representative RNases of fungal, bacterial, plant, and animal origins and outline their potential medicinal value in the treatment of tumor and AIDS. Among them, the most clinically promising RNases are mushroom RNases, Binase and Barnase from bacteria, ginseng RNases, and Onconase from frog (Rana pipiens). Fast developing protein engineering of RNases, which display more potent cytotoxic activity on and greater selectivity for malignant cells, has also aroused the interest of researchers. The multiple anti-cancer mechanisms of RNases are also included. To sum up, these inspiring studies unveil a new perspective for RNases as potential therapeutic agents.
Cell Metabolism | 2016
Sarah J. Mitchell; Morten Scheibye-Knudsen; Evandro Fei Fang; Miguel A. Aon; José A. González-Reyes; Sonia Cortassa; Susmita Kaushik; Marta Gonzalez-Freire; Bindi Patel; Devin Wahl; Ahmed Ali; Miguel Calvo-Rubio; María I. Burón; Vincent Guiterrez; Theresa M. Ward; Hector H. Palacios; Huan Cai; David W. Frederick; Christopher Hine; Filomena Broeskamp; Lukas Habering; John A Dawson; T. Mark Beasley; Junxiang Wan; Yuji Ikeno; Gene Hubbard; Kevin G. Becker; Yongqing Zhang; Vilhelm A. Bohr; Dan L. Longo
Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.
Nature Reviews Molecular Cell Biology | 2016
Evandro Fei Fang; Morten Scheibye-Knudsen; Katrin F. Chua; Mark P. Mattson; Deborah L. Croteau; Vilhelm A. Bohr
Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.
Cancer Prevention Research | 2012
Evandro Fei Fang; Chris Zhiyi Zhang; Tzi Bun Ng; Jack Ho Wong; Wen Liang Pan; Xiu Juan Ye; Yau Sang Chan; Wing-Ping Fong
The incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions, including southern China, northern Africa, and North America. One of the promising therapeutic approaches on NPC is drug screening from natural products, such as components from traditional Chinese medicine. In this study, the antitumor activity of Momordica charantia lectin (MCL), a type II ribosome inactivating protein from bitter gourd, on NPC was investigated. MCL evinced potent cytotoxicity toward NPC CNE-1 (IC50 = 6.9) and CNE-2 (IC50 = 7.4) cells but minimally affected normal NP 69 cells. Further investigation disclosed that MCL induced apoptosis, DNA fragmentation, G1-phase arrest, and mitochondrial injury in both types of NPC cells. The reduction of cyclin D1 and phosphoretinoblastoma (Rb) protein expression contributed to arrest at G1-phase of the cell cycle. These events were associated with regulation of mitogen-activated protein kinases (MAPK; including p38 MAPK, JNK, and ERK) phosphorylation and promoted downstream nitric oxide (NO) production. Concurrent administration of the p38 MAPK inhibitor SB-203580 significantly diminished NO production and lethality of MCL toward NPC cells. Further studies revealed that MCL increased cytochrome c release into the cytosol, activated caspases-8, -9, and -3, and enhanced production of cleaved PARP, subsequently leading to DNA fragmentation and apoptosis. Finally, an intraperitoneal injection of MCL (1.0 mg/kg/d) led to an average of 45% remission of NPC xenograft tumors subcutaneously inoculated in nude mice. This is the first article that unveils the potential of a type II RIP, MCL, for prevention and therapy of NPC. Cancer Prev Res; 5(1); 109–21. ©2011 AACR.
Cancer Letters | 2012
Evandro Fei Fang; Chris Zhiyi Zhang; Jack Ho Wong; Jia Yun Shen; Chuan Hao Li; Tzi Bun Ng
Human hepatocellular carcinoma Hep G2 cells and Hep G2-bearing mice were used as in vitro and in vivo models to assess the efficacy and safety of MAP30, a natural component from Momordica charantia, as an anticancer agent against liver cancer. Molecular studies disclosed the contribution of both caspase-8 regulated extrinsic and caspase-9 regulated intrinsic caspase cascades in MAP30-induced cell apoptosis. The antitumor potential was also effective in Hep G2-bearing nude mice. Since bitter gourd is a staple in many Asian countries, MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer.
Journal of Agricultural and Food Chemistry | 2010
Evandro Fei Fang; Peng Lin; Jack Ho Wong; S. W. Tsao; Tzi Bun Ng
Lectins/hemagglutinins are a class of sugar-binding proteins which agglutinate cells and/or precipitate glycoconjugates. They occur widely in plants but manifest significant differences in activities, which means only a few of them own exploitable potentials. The objective of this study was to find and characterize a multifunctional plant lectin with high potential values in food chemistry and medicine. A 60-kDa lectin from Phaseolus vulgaris L. cv. Extralong Autumn Purple Bean (EAPL) was purified by liquid chromatography, and the sequence of its first 20 N-terminal amino acids was ANEIYFSFQRFNETNLILQR. It was galactose-specific and manifested hemagglutinating activity toward erythrocytes of rabbit, rat, mouse, and human ABO blood types. EAPL manifested anti-HIV-1-RT activity, and it could inhibit the proliferation of human tumor cells by inducing the production of apoptotic bodies. The nitric oxide-inducing activity of EAPL may find application in tumor therapy.