Evangelos Gidarakos
Technical University of Crete
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evangelos Gidarakos.
Journal of Hazardous Materials | 2010
Maria Aivalioti; Ioannis Vamvasakis; Evangelos Gidarakos
The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950).
Journal of Hazardous Materials | 2012
Maria Aivalioti; Panagiotis Papoulias; Athanasia Kousaiti; Evangelos Gidarakos
The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw, thermally, chemically and both chemically and thermally treated diatomite was studied, through batch adsorption experiments. In total, 14 different diatomite samples were created and tested. Selected physical characteristics of the adsorbents, such as specific surface area and pore volume distribution, were determined. Matrix and competitive adsorption effects were also explored. It was proved that the diatomite samples were effective in removing BTEX, MTBE and TAME from aqueous solutions, with the sample treated with HCl being the most effective, as far as its adsorption capacity and equilibrium time are concerned. Among the contaminants, BTEX appeared to have the strongest affinity, based on mass uptake by the diatomite samples. Matrix effects were proved to be strong, significantly decreasing the adsorption of the contaminants onto diatomite. The kinetics data proved a closer fit to the pseudo second order model, while the isotherm experimental data were a better fit to the Freundlich model. However, the latter produced values of the isotherm constant 1/n greater than one, indicating unfavorable adsorption.
Journal of Hazardous Materials | 2010
Apostolos Giannis; Despina Pentari; Jing-Yuan Wang; Evangelos Gidarakos
An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.
Waste Management | 2009
Emmanouil Dimitrakakis; Alexander Janz; Bernd Bilitewski; Evangelos Gidarakos
The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.
Journal of Hazardous Materials | 2012
Kalliopi Anastasiadou; Konstantinos Christopoulos; Epameinontas Mousios; Evangelos Gidarakos
In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively.
Journal of Hazardous Materials | 2009
Evangelos Gidarakos; Maria Petrantonaki; Kalliopi Anastasiadou; Karl-Werner Schramm
The uncontrolled disposal of bottom ash from incineration units of hazardous and infected wastes in many countries causes significant scale damage, since it contaminates the soil as well as surface and underground waters, putting both the environment and the public health at risk. In view of the above, a study of bottom ash produced at a hospital medical waste incinerator (HMWI) in Greece was conducted, in order to detect the presence of heavy metals and therefore assess its toxicity; this led to conclusions on the possible contamination of the soil as well as surface and underground waters as a result of its disposal in landfills. The study was conducted at a typical general hospital with 500-bed capacity. About 880 kg of infectious waste coming from a general hospital with all medical departments are pyrolyticly incinerated at the HMWI every day. International literature contains many references to research that characterizes bottom ash as either dangerous, not dangerous, or inert, in an effort to diagnose its proper management and disposal. For this reason, this study focuses on the characterization of bottom ash. Samples were collected from a combustion chamber, over a period of 1 year, and a series of tests were conducted, including an analysis of particle size distribution, morphology, mineralogical and chemical composition, heavy metal leaching behavior and PCDD/F.
Chemosphere | 2014
John N. Hahladakis; Nikolaos Lekkas; Andreas Smponias; Evangelos Gidarakos
This study focused on the sequential application of a chelating agent (citric acid) followed by a surfactant in the simultaneous electroremediation of real contaminated sediments from toxic metals and Polycyclic Aromatic Hydrocarbons (PAHs). Furthermore, the efficiency evaluation of two innovative non-ionic surfactants, commercially known as Poloxamer 407 and Nonidet P40, was investigated. The results indicated a removal efficacy of approximately 43% and 48% for the summation of PAHs (SUM PAHs), respectively for the aforementioned surfactants, much better than the one obtained by the use of Tween 80 (nearly 21%). Individual PAHs (e.g. fluorene) were removed in percentages that reached almost 84% and 92% in the respective electrokinetic experiments when these new surfactants were introduced. In addition, the combined-enhanced sequential electrokinetic treatment with citric acid improved dramatically the removal of Zn and As, compared to the unenhanced run, but did not favor the other toxic metals examined. Since no improvement in metal removal percentages occurred when Tween 80 was used, significant contribution to this matter should also be attributed to the solubilization capacity of these innovative, in electrokinetic remediation, non-ionic surfactants.
Journal of Hazardous Materials | 2012
Maria Aivalioti; Despina Pothoulaki; Panagiotis Papoulias; Evangelos Gidarakos
The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw (L(raw)) and thermally treated lignite at 250 C, 550 °C and 750 °C (L250, L550 and L750, respectively) was studied, through batch experiments. Selected physical characteristics of both raw and treated lignite such as surface area and pore volume distribution were determined. Competitive adsorption effects were also explored. It was proved that the examined lignite samples were quite effective in removing BTEX, MTBE and TAME from aqueous solutions, with sample treated at 750 °C being the most effective. Among the contaminants, BTEX appeared to have the strongest affinity, based on mass uptake by lignite samples. BTEX presence was found to significantly prevent MTBE and TAME adsorption on lignite (up to ∼55%). In all cases, equilibrium was achieved within 3h. The kinetics data proved a closer fit to the pseudo second order model, while the isotherm experimental data were a better fit to the Freundlich model, producing in some cases values of the isotherm constant 1/n less than one, indicating favorable adsorption. Respective batch experiments using commercial activated carbon (AC) were also conducted for comparison.
Journal of Hazardous Materials | 2011
Elisabetta Turro; Apostolos Giannis; Raffaello Cossu; Evangelos Gidarakos; Dionissios Mantzavinos; Alexandros Katsaounis
The electrochemical oxidation of stabilized landfill leachate with 2960 mg L(-1) chemical oxygen demand (COD) over a Ti/IrO(2)-RuO(2) anode was investigated in the presence of HClO(4) as the supporting electrolyte. Emphasis was given on the effect of electrolysis time (up to 240 min) and temperature (30, 60 and 80°C), current density (8, 16 and 32 mA cm(-2)), initial effluents pH (0.25, 3, 5 and 6), HClO(4) concentration (0.25 and 1M) and the addition of NaCl (20 and 100mM) or Na(2)SO(4) (20mM) as source of extra electrogenerated oxidants on performance; the latter was evaluated regarding COD, total carbon (TC), total phenols (TPh) and color removal. Moreover, the anode was studied by scanning electron microscopy and cyclic voltammetry. The main parameters affecting the process were the effluents pH and the addition of salts. Treatment for 240 min at 32 mA cm(-2) current density, 80°C and the pH adjusted from its inherent value of 0.25 (i.e. after the addition of HClO(4)) to 3 yielded 90% COD, 65% TC and complete color and TPh removal at an electricity consumption of 35 kWh kg(-1) COD removed. Comparable performance (i.e. 75% COD reduction) could be achieved without pH adjustment but with the addition of 100mM NaCl consuming 20 kWh kg(-1) COD removed.
Journal of Hazardous Materials | 2008
Dimitrios Kalderis; Steven B. Hawthorne; Anthony A. Clifford; Evangelos Gidarakos
Subcritical water was used at laboratory scale to reveal information with respect to the degradation mechanism of TNT on contaminated soil. Highly contaminated soil (12% TNT) was heated with water at four different temperatures, 150, 175, 200 and 225 degrees C and samples were obtained at appropriate time intervals. At the same time, similar experiments were performed with TNT spiked on to clean soil, sand and pure water in order to compare and eliminate various factors that may be present in the more complex contaminated soil system. Subcritical water was successful at remediating TNT-contaminated soil. TNT destruction percentages ranged between 98 and 100%. The aim of this work was to study the soil-water-contaminant interaction and determine the main physical parameters that affect TNT degradation. It was shown that the rate-limiting step of the process is the extraction/diffusion of TNT molecules from the soil core to the soil surface, where they degrade. Additionally, it was determined that the soil matrix also catalyses degradation to a lesser extent. Autocatalytic effects were not clearly observed.