Evanthia Mergia
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evanthia Mergia.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Andreas Friebe; Evanthia Mergia; Oliver Dangel; Alexander Lange; Doris Koesling
The signaling molecule nitric oxide (NO), first described as endothelium-derived relaxing factor (EDRF), acts as physiological activator of NO-sensitive guanylyl cyclase (NO-GC) in the cardiovascular, gastrointestinal, and nervous systems. Besides NO-GC, other NO targets have been proposed; however, their particular contribution still remains unclear. Here, we generated mice deficient for the β1 subunit of NO-GC, which resulted in complete loss of the enzyme. GC-KO mice have a life span of 3–4 weeks but then die because of intestinal dysmotility; however, they can be rescued by feeding them a fiber-free diet. Apparently, NO-GC is absolutely vital for the maintenance of normal peristalsis of the gut. GC-KO mice show a pronounced increase in blood pressure, underlining the importance of NO in the regulation of smooth muscle tone in vivo. The lack of an NO effect on aortic relaxation and platelet aggregation confirms NO-GC as the only NO target regulating these two functions, excluding cGMP-independent mechanisms. Our knockout model completely disrupts the NO/cGMP signaling cascade and provides evidence for the unique role of NO-GC as NO receptor.
Circulation Research | 2004
Eiki Takimoto; Hunter C. Champion; Diego Belardi; Javid Moslehi; Marco Mongillo; Evanthia Mergia; David C. Montrose; Takayoshi Isoda; Kate Aufiero; Manuela Zaccolo; Wolfgang R. Dostmann; Carolyn J. Smith; David A. Kass
β-Adrenergic agonists stimulate cardiac contractility and simultaneously blunt this response by coactivating NO synthase (NOS3) to enhance cGMP synthesis and activate protein kinase G (PKG-1). cGMP is also catabolically regulated by phosphodiesterase 5A (PDE5A). PDE5A inhibition by sildenafil (Viagra) increases cGMP and is used widely to treat erectile dysfunction; however, its role in the heart and its interaction with β-adrenergic and NOS3/cGMP stimulation is largely unknown. In nontransgenic (control) murine in vivo hearts and isolated myocytes, PDE5A inhibition (sildenafil) minimally altered rest function. However, when the hearts or isolated myocytes were stimulated with isoproterenol, PDE5A inhibition was associated with a suppression of contractility that was coupled to elevated cGMP and increased PKG-1 activity. In contrast, NOS3-null hearts or controls with NOS inhibited by NG-nitro-l-arginine methyl ester, or soluble guanylate cyclase (sGC) inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, showed no effect of PDE5A inhibition on β-stimulated contractility or PKG-1 activation. This lack of response was not attributable to altered PDE5A gene or protein expression or in vitro PDE5A activity, but rather to an absence of sGC-generated cGMP specifically targeted to PDE5A catabolism and to a loss of PDE5A localization to z-bands. Re-expression of active NOS3 in NOS3-null hearts by adenoviral gene transfer restored PDE5A z-band localization and the antiadrenergic efficacy of PDE5A inhibition. These data support a novel regulatory role of PDE5A in hearts under adrenergic stimulation and highlight specific coupling of PDE5A catabolic regulation with NOS3-derived cGMP attributable to protein subcellular localization and targeted synthetic/catabolic coupling.
Journal of Clinical Investigation | 2006
Evanthia Mergia; Andreas Friebe; Oliver Dangel; Michael Russwurm; Doris Koesling
In the vascular system, the receptor for the signaling molecule NO, guanylyl cyclase (GC), mediates smooth muscle relaxation and inhibition of platelet aggregation by increasing intracellular cyclic GMP (cGMP) concentration. The heterodimeric GC exists in 2 isoforms (alpha1-GC, alpha2-GC) with indistinguishable regulatory properties. Here, we used mice deficient in either alpha1- or alpha2-GC to dissect their biological functions. In platelets, alpha1-GC, the only isoform present, was responsible for NO-induced inhibition of aggregation. In aortic tissue, alpha1-GC, as the major isoform (94%), mediated vasodilation. Unexpectedly, alpha2-GC, representing only 6% of the total GC content in WT, also completely relaxed alpha1-deficient vessels albeit higher NO concentrations were needed. The functional impact of the low cGMP levels produced by alpha2-GC in vivo was underlined by pronounced blood pressure increases upon NO synthase inhibition. As a fractional amount of GC was sufficient to mediate vasorelaxation at higher NO concentrations, we conclude that the majority of NO-sensitive GC is not required for cGMP-forming activity but as NO receptor reserve to increase sensitivity toward the labile messenger NO in vivo.
Nature | 2013
Jeanette Erdmann; Klaus Stark; Ulrike Esslinger; Philipp Moritz Rumpf; Doris Koesling; Cor de Wit; Frank J. Kaiser; Diana Braunholz; Anja Medack; Marcus Fischer; Martina E. Zimmermann; Stephanie Tennstedt; Elisabeth Graf; Sebastian H. Eck; Zouhair Aherrahrou; Janja Nahrstaedt; Christina Willenborg; Petra Bruse; Ingrid Brænne; Markus M. Nöthen; Per Hofmann; Peter S. Braund; Evanthia Mergia; Wibke Reinhard; Christof Burgdorf; Stefan Schreiber; Anthony J. Balmforth; Alistair S. Hall; Lars Bertram; Elisabeth Steinhagen-Thiessen
Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.
Neurochemistry International | 2004
Doris Koesling; Michael Russwurm; Evanthia Mergia; Florian Mullershausen; Andreas Friebe
By the formation of the second messenger cGMP, NO-sensitive guanylyl cyclase (GC) plays a key role within the NO/cGMP signaling cascade which participates in vascular regulation and neurotransmission. The enzyme contains a prosthetic heme group that acts as the acceptor site for NO. High affinity binding of NO to the heme moiety leads to an up to 200-fold activation of the enzyme. Unexpectedly, NO dissociates with a half-life of a few seconds which appears fast enough to account for the deactivation of the enzyme in biological systems. YC-1 and its analogs act as NO sensitizers and led to the discovery of a novel pharmacologically and conceivably physiologically relevant regulatory principle of the enzyme. The two isoforms of the heterodimeric enzyme (alpha1beta1, alpha2beta1) are known that are functionally indistinguishable. The alpha2beta1-isoform mainly occurs in brain whereas the alpha1beta1-enzyme shows a broader distribution and represents the predominantly expressed form of NO-sensitive GC. Until recently, the enzyme has been thought to occur in the cytosol. However, latest evidence suggests that the alpha2-subunit mediates the membrane association of the alpha2beta1-isoform via interaction with a PDZ domain of the post-synaptic scaffold protein PSD-95. Binding to PSD-95 locates this isoform in close proximity to the NO-generating synthases thereby enabling the NO sensor to respond to locally elevated NO concentrations. In sum, the two known isoforms may stand for the neuronal and vascular form of NO-sensitive GC reflecting a possible association to the neuronal and endothelial NO-synthase, respectively.
Cellular Signalling | 2003
Evanthia Mergia; Michael Russwurm; Georg Zoidl; Doris Koesling
Abstract NO-sensitive guanylyl cyclase (GC) acts as the effector molecule for NO and therefore plays a key role in the NO/cGMP signalling cascade. Besides the long known GC isoform (α 1 β 1 ), another heterodimer (α 2 β 1 ) has recently been identified to be associated with PSD-95 in brain. Here, we report on the tissue distribution of all known guanylyl cyclase subunits to elucidate the isoform content in different tissues of the mouse. The guanylyl cyclase subunit levels were assessed with quantitative real-time PCR, and the most important results were verified in Western blots. We demonstrate the major occurrence of the α 2 β 1 heterodimer in brain, find a significant amount in lung and lower amounts in all other tissues tested. In brain, the levels of the α 2 β 1 and α 1 β 1 isoforms were comparable; in all other tissues, the α 1 β 1 heterodimer was the predominating isoform. The highest guanylyl cyclase content was found in lung; here the GC amounted to approximately twice as much as in brain. In sum, the major occurrence of the α 2 β 1 heterodimer suggests a special role in synaptic transmission; whether this isoform outside the brain also occurs in neuronal networks has to be addressed in future studies.
Redox biology | 2014
Miriam M. Cortese-Krott; Bernadette O. Fernandez; José L.T. Santos; Evanthia Mergia; Marian Grman; Péter Nagy; Malte Kelm; Anthony R. Butler; Martin Feelisch
Sulfide salts are known to promote the release of nitric oxide (NO) from S-nitrosothiols and potentiate their vasorelaxant activity, but much of the cross-talk between hydrogen sulfide and NO is believed to occur via functional interactions of cell regulatory elements such as phosphodiesterases. Using RFL-6 cells as an NO reporter system we sought to investigate whether sulfide can also modulate nitrosothiol-mediated soluble guanylyl cyclase (sGC) activation following direct chemical interaction. We find a U-shaped dose response relationship where low sulfide concentrations attenuate sGC stimulation by S-nitrosopenicillamine (SNAP) and cyclic GMP levels are restored at equimolar ratios. Similar results are observed when intracellular sulfide levels are raised by pre-incubation with the sulfide donor, GYY4137. The outcome of direct sulfide/nitrosothiol interactions also critically depends on molar reactant ratios and is accompanied by oxygen consumption. With sulfide in excess, a ‘yellow compound’ accumulates that is indistinguishable from the product of solid-phase transnitrosation of either hydrosulfide or hydrodisulfide and assigned to be nitrosopersulfide (perthionitrite, SSNO−; λmax 412 nm in aqueous buffers, pH 7.4; 448 nm in DMF). Time-resolved chemiluminescence and UV–visible spectroscopy analyses suggest that its generation is preceded by formation of the short-lived NO-donor, thionitrite (SNO−). In contrast to the latter, SSNO− is rather stable at physiological pH and generates both NO and polysulfides on decomposition, resulting in sustained potentiation of SNAP-induced sGC stimulation. Thus, sulfide reacts with nitrosothiols to form multiple bioactive products; SSNO− rather than SNO− may account for some of the longer-lived effects of nitrosothiols and contribute to sulfide and NO signaling.
Journal of Thrombosis and Haemostasis | 2010
Oliver Dangel; Evanthia Mergia; K. Karlisch; D. Groneberg; Doris Koesling; Andreas Friebe
See also Gordge MP. Nitric oxide: a one‐trick pony? This issue, pp 1340–2.
The Journal of Neuroscience | 2009
Feras Taqatqeh; Evanthia Mergia; Angela Neitz; Ulf T. Eysel; Doris Koesling; Thomas Mittmann
Although nitric oxide (NO) has been implicated as a messenger molecule in hippocampal long-term potentiation (LTP) for almost 20 years, its precise function has not been elucidated because presynaptic and/or postsynaptic actions of NO have been reported. Most of the effects of NO as a signaling molecule are mediated by the NO receptor guanylyl cyclases (NO-GCs), two heme-containing enzymes with pronounced homology in which cGMP-forming activity is stimulated on NO binding. Here we report on knock-out (KO) mice in which either one of the NO-GC receptors has been genetically deleted. By measuring NO-induced cGMP levels, similar quantities of both NO-GC receptors were determined in the hippocampus. Surprisingly, hippocampal LTP was abolished in either one of the KO strains, demonstrating that both NO-GC receptors are required in the course of LTP. Expression of LTP was restored with a cGMP analog in one of the KO strains but did not recover in the other one. Moreover, single-cell recordings of paired pulse facilitation revealed a presynaptic role of one of the NO-GC isoforms in neurotransmitter release, confirming different roles of the NO-GC receptors in LTP. Because neither one of the NO/cGMP-induced responses by itself is sufficient for LTP, two divergent, possibly presynaptically and postsynaptically localized NO-stimulated cGMP pathways are apparently required for the expression of LTP. The unexpected role of cGMP at two sites of the synaptic cleft explains many of the controversial results in former NO research in LTP and demonstrates the necessity of presynaptic and postsynaptic changes for LTP expression.
The Journal of Neuroscience | 2007
Arash Haghikia; Evanthia Mergia; Andreas Friebe; Ulf T. Eysel; Doris Koesling; Thomas Mittmann
The role of nitric oxide (NO)/cGMP signaling in long-term potentiation (LTP) has been a lingering matter of debate. Within the cascade, the NO receptor guanylyl cyclase (GC), the cGMP-forming enzyme that is stimulated by NO, plays a key role. Two isoforms of GC (α2-GC, α1-GC) exist. To evaluate their contribution to synaptic plasticity, we analyzed knock-out mice lacking either one of the GC isoforms. We found that LTP induced in the visual cortex is NO dependent in the wild-type mice, absent in either of the GC isoform-deficient mice, and restored with application of a cGMP analog in both strains. The requirement of both NO receptor GCs for LTP indicates the existence of two distinct NO/cGMP-mediated pathways, which have to work in concert for expression of LTP.