Johannes Stegbauer
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Stegbauer.
Current Opinion in Nephrology and Hypertension | 2011
Johannes Stegbauer; Thomas M. Coffman
Purpose of reviewThe renin–angiotensin system (RAS) is critical for cardiovascular control, impacting normal physiology and disease pathogenesis. Although several biologically active peptides are generated by this system, its major actions are mediated by angiotensin II acting through its type 1 (AT1) and type 2 (AT2) receptors. Along with their effects to influence blood pressure and hemodynamics, recent studies have provided evidence that angiotensin receptors influence a range of processes independent from hemodynamic effects. Recent findingsThis review is focused on new molecular mechanisms underlying actions of AT1 receptors to influence vasoconstriction, inflammation, immune responses, and longevity. Moreover, we also highlight new advances in understanding functions of the AT2 receptor in end-organ damage, emphasizing the AT2 receptor as a potential therapeutic target in cardiovascular diseases. SummaryHere we review recent advances in understanding the role of angiotensin receptors in normal physiology and disease states, focusing on their properties that may contribute to blood pressure regulation, end-organ damage, autoimmune disease and longevity.
American Journal of Physiology-renal Physiology | 2010
Susan B. Gurley; Carrie L. Mach; Johannes Stegbauer; Jihong Yang; Kamie P. Snow; Ann Hu; Timothy W. Meyer; Thomas M. Coffman
Previous studies have shown that Akita mice bearing the Ins2(+/C96Y) mutation have significant advantages as a type I diabetes platform for developing models of diabetic nephropathy (DN; Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Am J Physiol Renal Physiol 290: F214-F222, 2006). In view of the critical role for genetic factors in determining susceptibility to DN in humans, we investigated the role of genetic background on kidney injury in Akita mice. To generate a series of inbred Akita mouse lines, we back-crossed the Ins2(C96Y) mutation more than six generations onto the 129/SvEv and DBA/2 backgrounds and compared the extent of hyperglycemia and renal disease with the standard C57BL/6-Ins2(+/C96Y) line. Male mice from all three Akita strains developed marked and equivalent hyperglycemia. However, there were significant differences in the level of albuminuria among the lines with a hierarchy of DBA/2 > 129/SvEv > C57BL/6. Renal and glomerular hypertrophy was seen in all of the lines, but significant increases in mesangial matrix compared with baseline nondiabetic controls were observed only in the 129 and C57BL/6 backgrounds. In F1(DBA/2 x C57BL/6)-Ins2(+/C96Y) mice, the extent of albuminuria was similar to the parental DBA/2-Ins2(+/C96Y) line; they also developed marked hyperfiltration. These studies identify strong effects of genetic background to modify the renal phenotype associated with the Ins2(C96Y) mutation. Identification of these naturally occurring strain differences should prove useful for nephropathy modeling and may be exploited to allow identification of novel susceptibility alleles for albuminuria in diabetes.
Hypertension | 2010
Steven D. Crowley; Young-soo Song; Gregory Sprung; Robert I. Griffiths; Matthew A. Sparks; Ming Yan; James L. Burchette; David N. Howell; Eugene E. Lin; Benson Okeiyi; Johannes Stegbauer; Yanqiang Yang; Pierre-Louis Tharaux; Phillip Ruiz
Activation of type 1 angiotensin (AT1) receptors causes hypertension, leading to progressive kidney injury. AT1 receptors are expressed on immune cells, and previous studies have identified a role for immune cells in angiotensin II–dependent hypertension. We, therefore, examined the role of AT1 receptors on immune cells in the pathogenesis of hypertension by generating bone marrow chimeras with wild-type donors or donors lacking AT1A receptors (BMKO). The 2 groups had virtually identical blood pressures at baseline, suggesting that AT1 receptors on immune cells do not make a unique contribution to the determination of baseline blood pressure. By contrast, in response to chronic angiotensin II infusion, the BMKOs had an augmented hypertensive response, suggesting a protective effect of AT1 receptors on immune cells with respect to blood pressure elevation. The BMKOs had 50% more albuminuria after 4 weeks of angiotensin II–dependent hypertension. Angiotensin II–induced pathological injury to the kidney was similar in the experimental groups. However, there was exaggerated renal expression of the macrophage chemokine monocyte chemoattractant protein 1 in the BMKO group, leading to persistent accumulation of macrophages in the kidney. This enhanced mononuclear cell infiltration into the BMKO kidneys was associated with exaggerated renal expression of the vasoactive mediators interleukin-1&bgr; and interleukin-6. Thus, in angiotensin II–induced hypertension, bone marrow–derived AT1 receptors limited mononuclear cell accumulation in the kidney and mitigated the chronic hypertensive response, possibly through the regulation of vasoactive cytokines.
Hypertension | 2011
Matthew A. Sparks; Kelly K. Parsons; Johannes Stegbauer; Susan B. Gurley; Anuradha Vivekanandan-Giri; Christopher N. Fortner; Jay Snouwaert; Eric W. Raasch; Robert Griffiths; Timothy A. J. Haystead; Thu H. Le; Subramaniam Pennathur; Beverly H. Koller; Thomas M. Coffman
Vascular injury and remodeling are common pathological sequelae of hypertension. Previous studies have suggested that the renin-angiotensin system acting through the type 1 angiotensin II (AT1) receptor promotes vascular pathology in hypertension. To study the role of AT1 receptors in this process, we generated mice with cell-specific deletion of AT1 receptors in vascular smooth muscle cells using Cre/Loxp technology. We crossed the SM22&agr;-Cre transgenic mouse line expressing Cre recombinase in smooth muscle cells with a mouse line bearing a conditional allele of the Agtr1a gene (Agtr1aflox), encoding the major murine AT1 receptor isoform (AT1A). In SM22&agr;-Cre+Agtr1aflox/flox (SMKO) mice, AT1A receptors were efficiently deleted from vascular smooth muscle cells in larger vessels but not from resistance vessels such as preglomerular arterioles. Thus, vasoconstrictor responses to angiotensin II were preserved in SMKO mice. To induce hypertensive vascular remodeling, mice were continuously infused with angiotensin II for 4 weeks. During infusion of angiotensin II, blood pressures increased significantly and to a similar extent in SMKO and control mice. In control mice, there was evidence of vascular oxidative stress indicated by enhanced nitrated tyrosine residues in segments of aorta; this was significantly attenuated in SMKO mice. Despite these differences in oxidative stress, the extent of aortic medial expansion induced by angiotensin II infusion was virtually identical in both groups. Thus, vascular AT1A receptors promote oxidative stress in the aortic wall but are not required for remodeling in angiotensin II–dependent hypertension.
British Journal of Pharmacology | 2011
Johannes Stegbauer; Sebastian A. Potthoff; Ivo Quack; Evanthia Mergia; T Clasen; Sebastian Friedrich; Oliver Vonend; Magdalena Woznowski; Eva Königshausen; L Sellin; Lars Christian Rump
BACKGROUND AND PURPOSE ApolipoproteinE‐deficient [apoE (−/−)] mice, a model of human atherosclerosis, develop endothelial dysfunction caused by decreased levels of nitric oxide (NO). The endogenous peptide, angiotensin‐(1‐7) [Ang‐(1‐7)], acting through its specific GPCR, the Mas receptor, has endothelium‐dependent vasodilator properties. Here we have investigated if chronic treatment with Ang‐(1‐7) improved endothelial dysfunction in apoE (−/−) mice.
Journal of Clinical Investigation | 2014
Jian Dong Zhang; Mehul B. Patel; Robert Griffiths; Paul C. Dolber; Phillip Ruiz; Matthew A. Sparks; Johannes Stegbauer; Huixia Jin; Jose A. Gomez; Anne F. Buckley; William S. Lefler; Daian Chen; Steven D. Crowley
In a wide array of kidney diseases, type 1 angiotensin (AT1) receptors are present on the immune cells that infiltrate the renal interstitium. Here, we examined the actions of AT1 receptors on macrophages in progressive renal fibrosis and found that macrophage-specific AT1 receptor deficiency exacerbates kidney fibrosis induced by unilateral ureteral obstruction (UUO). Macrophages isolated from obstructed kidneys of mice lacking AT1 receptors solely on macrophages had heightened expression of proinflammatory M1 cytokines, including IL-1. Evaluation of isolated AT1 receptor-deficient macrophages confirmed the propensity of these cells to produce exaggerated levels of M1 cytokines, which led to more severe renal epithelial cell damage via IL-1 receptor activation in coculture compared with WT macrophages. A murine kidney crosstransplantation concomitant with UUO model revealed that augmentation of renal fibrosis instigated by AT1 receptor-deficient macrophages is mediated by IL-1 receptor stimulation in the kidney. This study indicates that a key role of AT1 receptors on macrophages is to protect the kidney from fibrosis by limiting activation of IL-1 receptors in the kidney.
Journal of The American Society of Nephrology | 2011
Johannes Stegbauer; Susan B. Gurley; Matthew A. Sparks; Magdalena Woznowski; Donald E. Kohan; Ming Yan; Ruediger W. Lehrich; Thomas M. Coffman
Mice lacking AT(1) angiotensin receptors have an impaired capacity to concentrate the urine, but the underlying mechanism is unknown. To determine whether direct actions of AT(1) receptors in epithelial cells of the collecting duct regulate water reabsorption, we used Cre-Loxp technology to specifically eliminate AT(1A) receptors from the collecting duct in mice (CD-KOs). Although levels of AT(1A) receptor mRNA in the inner medulla of CD-KO mice were significantly reduced, their kidneys appeared structurally normal. Under basal conditions, plasma and urine osmolalities and urine volumes were similar between CD-KO mice and controls. The increase in urine osmolality in response to water deprivation or vasopressin administration, however, was consistently attenuated in CD-KO mice. Similarly, levels of aquaporin-2 protein in inner and outer medulla after water deprivation were significantly lower in CD-KO mice compared with controls, despite its normal localization to the apical membrane. In summary, these results demonstrate that AT(1A) receptors in epithelial cells of the collecting duct directly modulate aquaporin-2 levels and contribute to the concentration of urine.
Journal of The American Society of Nephrology | 2015
Matthew A. Sparks; Johannes Stegbauer; Daian Chen; Jose A. Gomez; Robert Griffiths; Hooman A. Azad; Marcela Herrera; Susan B. Gurley; Thomas M. Coffman
Inappropriate activation of the type 1A angiotensin (AT1A) receptor contributes to the pathogenesis of hypertension and its associated complications. To define the role for actions of vascular AT1A receptors in BP regulation and hypertension pathogenesis, we generated mice with cell-specific deletion of AT1A receptors in smooth muscle cells (SMKO mice) using Loxp technology and Cre transgenes with robust expression in both conductance and resistance arteries. We found that elimination of AT1A receptors from vascular smooth muscle cells (VSMCs) caused a modest (approximately 7 mmHg) yet significant reduction in baseline BP and exaggerated sodium sensitivity in mice. Additionally, the severity of angiotensin II (Ang II)-dependent hypertension was dramatically attenuated in SMKO mice, and this protection against hypertension was associated with enhanced urinary excretion of sodium. Despite the lower BP, acute vasoconstrictor responses to Ang II in the systemic vasculature were largely preserved (approximately 80% of control levels) in SMKO mice because of exaggerated activity of the sympathetic nervous system rather than residual actions of AT1B receptors. In contrast, Ang II-dependent responses in the renal circulation were almost completely eliminated in SMKO mice (approximately 5%-10% of control levels). These findings suggest that direct actions of AT1A receptors in VSMCs are essential for regulation of renal blood flow by Ang II and highlight the capacity of Ang II-dependent vascular responses in the kidney to effect natriuresis and BP control.
Journal of Neuroimmunology | 2009
Fred Lühder; De-Hyung Lee; Ralf Gold; Johannes Stegbauer; Ralf A. Linker
In the recent years, it has become increasingly clear that the immune response is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, small peptide hormones may play an important role. Kinins like bradykinins act on the endothelium and play a role for trafficking of lymphocytes over the blood-brain barrier. Neuropeptides like vasoactive intestinal peptide or neuropeptide Y also directly act on T cells and favour the differentiation of Th2 cells or regulatory T cell populations. Recently, the renin-angiotensin system (RAS) came into the focus of interest. Inhibition of the RAS at different levels may influence autoimmune responses and involve T cells as well as antigen-presenting cells, probably via different signalling pathways. Inhibitors of angiotensin converting enzyme and antagonists of the angiotensin 1 receptors are used in the treatment of hypertension, kidney disease or stroke by millions of people worldwide. These inexpensive and safe pharmaceuticals may also represent an interesting and innovative approach for the (combination) treatment of autoimmune diseases like multiple sclerosis.
PLOS ONE | 2013
Johannes Stegbauer; Sebastian Friedrich; Sebastian A. Potthoff; Kathrin Broekmans; Miriam M. Cortese-Krott; Ivo Quack; Lars Christian Rump; Doris Koesling; Evanthia Mergia
NO/cGMP signaling plays an important role in vascular relaxation and regulation of blood pressure. The key enzyme in the cascade, the NO-stimulated cGMP-forming guanylyl cyclase exists in two enzymatically indistinguishable isoforms (NO-GC1, NO-GC2) with NO-GC1 being the major NO-GC in the vasculature. Here, we studied the NO/cGMP pathway in renal resistance arteries of NO-GC1 KO mice and its role in renovascular hypertension induced by the 2-kidney-1-clip-operation (2K1C). In the NO-GC1 KOs, relaxation of renal vasculature as determined in isolated perfused kidneys was reduced in accordance with the marked reduction of cGMP-forming activity (80%). Noteworthy, increased eNOS-catalyzed NO formation was detected in kidneys of NO-GC1 KOs. Upon the 2K1C operation, NO-GC1 KO mice developed hypertension but the increase in blood pressures was not any higher than in WT. Conversely, operated WT mice showed a reduction of cGMP-dependent relaxation of renal vessels, which was not found in the NO-GC1 KOs. The reduced relaxation in operated WT mice was restored by sildenafil indicating that enhanced PDE5-catalyzed cGMP degradation most likely accounts for the attenuated vascular responsiveness. PDE5 activation depends on allosteric binding of cGMP. Because cGMP levels are lower, the 2K1C-induced vascular changes do not occur in the NO-GC1 KOs. In support of a higher PDE5 activity, sildenafil reduced blood pressure more efficiently in operated WT than NO-GC1 KO mice. All together our data suggest that within renovascular hypertension, cGMP-based PDE5 activation terminates NO/cGMP signaling thereby providing a new molecular basis for further pharmacological interventions.