Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evelina Vågesjö is active.

Publication


Featured researches published by Evelina Vågesjö.


Blood | 2012

VEGF-A recruits a proangiogenic MMP-9–delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue

Gustaf Christoffersson; Evelina Vågesjö; Jennifer Vandooren; Majken Lidén; Sara Massena; Rachel B. Reinert; Marcela Brissova; Alvin C. Powers; Ghislain Opdenakker; Mia Phillipson

Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.


Blood | 2015

Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans.

Sara Massena; Gustaf Christoffersson; Evelina Vågesjö; Cedric Seignez; Karin Gustafsson; François Binet; Carmen Herrera Hidalgo; Antoine Giraud; Jalal Lomei; Simone Weström; Masabumi Shibuya; Lena Claesson-Welsh; Pär Gerwins; Michael A. Welsh; Johan Kreuger; Mia Phillipson

Vascular endothelial growth factor A (VEGF-A) is upregulated during hypoxia and is the major regulator of angiogenesis. VEGF-A expression has also been found to recruit myeloid cells to ischemic tissues where they contribute to angiogenesis. This study investigates the mechanisms underlying neutrophil recruitment to VEGF-A as well as the characteristics of these neutrophils. A previously undefined circulating subset of neutrophils shown to be CD49d(+)VEGFR1(high)CXCR4(high) was identified in mice and humans. By using chimeric mice with impaired VEGF receptor 1 (VEGFR1) or VEGFR2 signaling (Flt-1tk(-/-), tsad(-/-)), we found that parallel activation of VEGFR1 on neutrophils and VEGFR2 on endothelial cells was required for VEGF-A-induced recruitment of circulating neutrophils to tissue. Intravital microscopy of mouse microcirculation revealed that neutrophil recruitment by VEGF-A versus by the chemokine macrophage inflammatory protein 2 (MIP-2 [CXCL2]) involved the same steps of the recruitment cascade but that an additional neutrophil integrin (eg, VLA-4 [CD49d/CD29]) played a crucial role in neutrophil crawling and emigration to VEGF-A. Isolated CD49d(+) neutrophils featured increased chemokinesis but not chemotaxis compared with CD49d(-) neutrophils in the presence of VEGF-A. Finally, by targeting the integrin α4 subunit (CD49d) in a transplantation-based angiogenesis model that used avascular pancreatic islets transplanted to striated muscle, we demonstrated that inhibiting the recruitment of circulating proangiogenic neutrophils to hypoxic tissue impairs vessel neoformation. Thus, angiogenesis can be modulated by targeting cell-surface receptors specifically involved in VEGF-A-dependent recruitment of proangiogenic neutrophils without compromising recruitment of the neutrophil population involved in the immune response to pathogens.


Sleep | 2014

Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men.

Christian Benedict; Jonathan Cedernaes; Vilmantas Giedraitis; Emil K. Nilsson; Pleunie S. Hogenkamp; Evelina Vågesjö; Sara Massena; Ulrika Pettersson; Gustaf Christoffersson; Mia Phillipson; Jan-Erik Broman; Lars Lannfelt; Henrik Zetterberg; Helgi B. Schiöth

STUDY OBJECTIVES To investigate whether total sleep deprivation (TSD) affects circulating concentrations of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in humans. These factors are usually found in the cytoplasm of neurons and glia cells. Increasing concentrations of these factors in blood may be therefore indicative for either neuronal damage, impaired blood brain barrier function, or both. In addition, amyloid β (Aβ) peptides 1-42 and 1-40 were measured in plasma to calculate their ratio. A reduced plasma ratio of Aβ peptides 1-42 to 1-40 is considered an indirect measure of increased deposition of Aβ 1-42 peptide in the brain. DESIGN Subjects participated in two conditions (including either 8-h of nocturnal sleep [22:30-06:30] or TSD). Fasting blood samples were drawn before and after sleep interventions (19:30 and 07:30, respectively). SETTING Sleep laboratory. PARTICIPANTS 15 healthy young men. RESULTS TSD increased morning serum levels of NSE (P = 0.002) and S-100B (P = 0.02) by approximately 20%, compared with values obtained after a night of sleep. In contrast, the ratio of Aβ peptides 1-42 to 1-40 did not differ between the sleep interventions. CONCLUSIONS Future studies in which both serum and cerebrospinal fluid are sampled after sleep loss should elucidate whether the increase in serum neuron-specific enolase and S100 calcium binding protein B is primarily caused by neuronal damage, impaired blood brain barrier function, or is just a consequence of increased gene expression in non-neuronal cells, such as leukocytes.


Brain Behavior and Immunity | 2014

Acute sleep deprivation in healthy young men: impact on population diversity and function of circulating neutrophils.

Gustaf Christoffersson; Evelina Vågesjö; Ulrika Pettersson; Sara Massena; Emil K. Nilsson; Jan-Erik Broman; Helgi B. Schiöth; Christian Benedict; Mia Phillipson

Lack of sleep greatly affects our immune system. The present study investigates the acute effects of total sleep deprivation on blood neutrophils, the most abundant immune cell in our circulation and the first cell type recruited to sites of infection. Thus, the population diversity and function of circulating neutrophils were compared in healthy young men following one night of total sleep deprivation (TSD) or after 8h regular sleep. We found that neutrophil counts were elevated after nocturnal wakefulness (2.0 ± 0.2 × 10(9)/l vs. 2.6 ± 0.2 × 10(9)/l, sleep vs. TSD, respectively) and the population contained more immature CD16(dim)/CD62L(bright) cells (0.11 ± 0.040 × 10(9)/l [5.5 ± 1.1%] vs. 0.26 ± 0.020 × 10(9)/l [9.9 ± 1.4%]). As the rise in numbers of circulating mature CD16(bright)/CD62L(bright) neutrophils was less pronounced, the fraction of this subpopulation showed a significant decrease (1.8 ± 0.15 × 10(9)/l [88 ± 1.8%] vs. 2.1 ± 0.12 × 10(9)/l [82 ± 2.8%]). The surface expression of receptors regulating mobilization of neutrophils from bone marrow was decreased (CXCR4 and CD49d on immature neutrophils; CXCR2 on mature neutrophils). The receptor CXCR2 is also involved in the production of reactive oxygen species (ROS), and in line with this, total neutrophils produced less ROS. In addition, following sleep loss, circulating neutrophils exhibited enhanced surface levels of CD11b, which indicates enhanced granular fusion and concomitant protein translocation to the membrane. Our findings demonstrate that sleep loss exerts significant effects on population diversity and function of circulating neutrophils in healthy men. To which extent these changes could explain as to why people with poor sleep patterns are more susceptible to infections warrants further investigation.


Cell Transplantation | 2015

Immunological Shielding by Induced Recruitment of Regulatory T-Lymphocytes Delays Rejection of Islets Transplanted in Muscle

Evelina Vågesjö; Gustaf Christoffersson; Tomas Waldén; Per-Ola Carlsson; Magnus Essand; Olle Korsgren; Mia Phillipson

The only clinically available curative treatment of type 1 diabetes mellitus is replacement of the pancreatic islets by allogeneic transplantation, which requires immunosuppressive therapies. Regimens used today are associated with serious adverse effects and impaired islet engraftment and function. The aim of the current study was to induce local immune privilege by accumulating immune-suppressive regulatory T-lymphocytes (Tregs) at the site of intramuscular islet transplantation to reduce the need of immunosuppressive therapy during engraftment. Islets were cotransplanted with a plasmid encoding the chemokine CCL22 into the muscle of MHC-mismatched mice, after which pCCL22 expression and leukocyte recruitment were studied in parallel with graft functionality. Myocyte pCCL22 expression and secretion resulted in local accumulation of Tregs. When islets were cotransplanted with pCCL22, significantly fewer effector T-lymphocytes were observed in close proximity to the islets, leading to delayed graft rejection. As a result, diabetic recipients cotransplanted with islets and pCCL22 intramuscularly became normoglycemic for 10 consecutive days, while grafts cotransplanted with control plasmid were rejected immediately, leaving recipients severely hyperglycemic. Here we propose a simple method to initially shield MHC-mismatched islets by the recruitment of endogenous Tregs during engraftment in order to improve early islet survival. Using this approach, the very high doses of systemic immunosuppression used initially following transplantation can thereby be avoided.


Cellular Signalling | 2013

Aberrant association between vascular endothelial growth factor receptor-2 and VE-cadherin in response to vascular endothelial growth factor-a in Shb-deficient lung endothelial cells.

Guangxiang Zang; Gustaf Christoffersson; Geng Tian; Mohammad Harun-Or-Rashid; Evelina Vågesjö; Mia Phillipson; Sebastian Barg; Anders Tengholm; Michael Welsh

Vascular permeability is a hallmark response to the main angiogenic factor VEGF-A and we have previously described a reduction of this response in Shb knockout mice. To characterize the molecular mechanisms responsible for this effect, endothelial cells were isolated from lungs and analyzed in vitro. Shb deficient endothelial cells exhibited less migration in a scratch wound-healing assay both under basal conditions and after vascular endothelial growth factor-A (VEGF-A) stimulation, suggesting a functional impairment of these cells in vitro. Staining for VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR-2) showed co-localization in adherens junctions and in intracellular sites such as the perinuclear region in wild-type and Shb knockout cells. VEGF-A decreased the VE-cadherin/VEGFR-2 co-localization in membrane structures resembling adherens junctions in wild-type cells whereas no such response was noted in the Shb knockout cells. VE-cadherin/VEGFR-2 co-localization was also recorded using spinning-disk confocal microscopy and VEGF-A caused a reduced association in the wild-type cells whereas the opposite pattern was observed in the Shb knockout cells. The latter expressed slightly more of cell surface VEGFR-2. VEGF-A stimulated extracellular-signal regulated kinase, Akt and Rac1 activities in the wild-type cells whereas no such responses were noted in the knockout cells. We conclude that aberrant signaling characteristics with respect to ERK, Akt and Rac1 are likely explanations for the observed altered pattern of VE-cadherin/VEGFR-2 association. The latter is important for understanding the reduced in vivo vascular permeability response in Shb knockout mice, a phenomenon that has patho-physiological relevance.


PLOS ONE | 2016

In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence.

Shokoufeh Karimi; David Ahl; Evelina Vågesjö; Lena Holm; Mia Phillipson; Hans Jonsson; Stefan Roos

Lactobacillus reuteri is a symbiont that inhabits the gastrointestinal (GI) tract of mammals, and several strains are used as probiotics. After introduction of probiotic strains in a complex ecosystem like the GI tract, keeping track of them is a challenge. The main objectives of this study were to introduce reporter proteins that would enable in vivo and in vitro detection of L. reuteri and increase knowledge about its interactions with the host. We describe for the first time cloning of codon-optimized reporter genes encoding click beetle red luciferase (CBRluc) and red fluorescent protein mCherry in L. reuteri strains ATCC PTA 6475 and R2LC. The plasmid persistence of mCherry-expressing lactobacilli was evaluated by both flow cytometry (FCM) and conventional plate count (PC), and the plasmid loss rates measured by FCM were lower overall than those determined by PC. Neutralization of pH and longer induction duration significantly improved the mCherry signal. The persistency, dose-dependent signal intensity and localization of the recombinant bacteria in the GI tract of mice were studied with an in vivo imaging system (IVIS), which allowed us to detect fluorescence from 6475-CBRluc-mCherry given at a dose of 1×1010 CFU and luminescence signals at doses ranging from 1×105 to 1×1010 CFU. Both 6475-CBRluc-mCherry and R2LC-CBRluc were localized in the colon 1 and 2 h after ingestion, but the majority of the latter were still found in the stomach, possibly reflecting niche specificity for R2LC. Finally, an in vitro experiment showed that mCherry-producing R2LC adhered efficiently to the intra cellular junctions of cultured IPEC-J2 cells. In conclusion, the two reporter genes CBRluc and mCherry were shown to be suitable markers for biophotonic imaging (BPI) of L. reuteri and may provide useful tools for future studies of in vivo and in vitro interactions between the bacteria and the host.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria

Evelina Vågesjö; Emelie Öhnstedt; Anneleen Mortier; Hava Lofton; Fredrik Huss; Paul Proost; Stefan Roos; Mia Phillipson

Significance Chronic wounds comprise a growing clinical problem that represents >3% of the health care budget in industrialized countries. Drug development is hampered by the proteolytic nature of the wounds, which greatly limits drug bioavailability. Here, we present a technology that circumvents this by on-site production and reduced chemokine degradation. Lactobacilli bacteria were transformed into CXCL12-producing vectors to bioengineer the wound microenvironment after topical application. Consequently, the immune cells driving the healing process were reinforced, which greatly accelerated wound closure in healthy mice, in mouse models of hyperglycemia and peripheral ischemia, and in a wound model using human skin disks. Initial safety studies demonstrated that neither bacteria nor the chemokine produced was detected in systemic circulation following application to open wounds. Impaired wound closure is a growing medical problem associated with metabolic diseases and aging. Immune cells play important roles in wound healing by following instructions from the microenvironment. Here, we developed a technology to bioengineer the wound microenvironment and enhance healing abilities of the immune cells. This resulted in strongly accelerated wound healing and was achieved by transforming Lactobacilli with a plasmid encoding CXCL12. CXCL12-delivering bacteria administrated topically to wounds in mice efficiently enhanced wound closure by increasing proliferation of dermal cells and macrophages, and led to increased TGF-β expression in macrophages. Bacteria-produced lactic acid reduced the local pH, which inhibited the peptidase CD26 and consequently enhanced the availability of bioactive CXCL12. Importantly, treatment with CXCL12-delivering Lactobacilli also improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions associated with chronic wounds, and in a human skin wound model. Further, initial safety studies demonstrated that the topically applied transformed bacteria exerted effects restricted to the wound, as neither bacteria nor the chemokine produced could be detected in systemic circulation. Development of drugs accelerating wound healing is limited by the proteolytic nature of wounds. Our technology overcomes this by on-site chemokine production and reduced degradation, which together ensure prolonged chemokine bioavailability that instructed local immune cells and enhanced wound healing.


Acta Physiologica | 2015

Shb deficiency in endothelium but not in leucocytes is responsible for impaired vascular performance during hindlimb ischaemia

Maryam Nikpour; Karin Gustafsson; Evelina Vågesjö; Cedric Seignez; Antoine Giraud; Mia Phillipson; Michael Welsh

Myeloid cells have been suggested to participate in angiogenesis and regulation of vascular function. Shb‐deficient mice display both vascular and myeloid cell abnormalities with possible consequences for recovery after hindlimb ischaemia. This study was conducted in order to assess the contribution of Shb deficiency in myeloid cells to impaired vascular function in ischaemia.


Angiogenesis | 2012

Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency

Gustaf Christoffersson; Guangxiang Zang; Zhen W. Zhuang; Evelina Vågesjö; Michael Simons; Mia Phillipson; Michael Welsh

Collaboration


Dive into the Evelina Vågesjö's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Roos

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge