Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mia Phillipson is active.

Publication


Featured researches published by Mia Phillipson.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria

Malin E. V. Johansson; Mia Phillipson; Joel Petersson; Anna Velcich; Lena Holm; Gunnar C. Hansson

We normally live in symbiosis with ∼1013 bacteria present in the colon. Among the several mechanisms maintaining the bacteria/host balance, there is limited understanding of the structure, function, and properties of intestinal mucus. We now demonstrate that the mouse colonic mucus consists of two layers extending 150 μm above the epithelial cells. Proteomics revealed that both of these layers have similar protein composition, with the large gel-forming mucin Muc2 as the major structural component. The inner layer is densely packed, firmly attached to the epithelium, and devoid of bacteria. In contrast, the outer layer is movable, has an expanded volume due to proteolytic cleavages of the Muc2 mucin, and is colonized by bacteria. Muc2−/− mice have bacteria in direct contact with the epithelial cells and far down in the crypts, explaining the inflammation and cancer development observed in these animals. These findings show that the Muc2 mucin can build a mucus barrier that separates bacteria from the colon epithelia and suggest that defects in this mucus can cause colon inflammation.


Cancer Cell | 2011

HRG Inhibits Tumor Growth and Metastasis by Inducing Macrophage Polarization and Vessel Normalization through Downregulation of PlGF

Charlotte Rolny; Massimiliano Mazzone; Sònia Tugues; Damya Laoui; Irja Johansson; Cathy Coulon; Mario Leonardo Squadrito; Inmaculada Segura; Xiujuan Li; Ellen Knevels; Sandra Costa; Stefan Vinckier; Tom Dresselaer; Peter Åkerud; Maria De Mol; Henriikka Salomäki; Mia Phillipson; Sabine Wyns; Erik G. Larsson; Ian Buysschaert; Johan Botling; Uwe Himmelreich; Jo A. Van Ginderachter; Michele De Palma; Mieke Dewerchin; Lena Claesson-Welsh; Peter Carmeliet

Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.


Nature Medicine | 2011

The neutrophil in vascular inflammation

Mia Phillipson; Paul Kubes

Here we focus on how neutrophils have a key regulatory role in vascular inflammation. Recent studies using advanced imaging techniques have yielded new insights into the mechanisms by which neutrophils contribute to defense against bacterial infections and also against sterile injury. In these settings, neutrophils are recruited by various mechanisms depending on the situation. We also describe how these processes may be disrupted in systemic infections, with a particular emphasis on mouse models of sepsis. Neutrophils are often immobilized in the lungs and liver during systemic infections, and this immobilization may be a mechanism through which bacteria can evade the innate immune response or allow neutrophils to form neutrophil extracellular traps that trap and kill bacteria in blood. The platelet is also an important player in sepsis, and we describe how it collaborates with neutrophils in the formation of neutrophil extracellular traps.


Journal of Clinical Investigation | 2004

Nitrite in saliva increases gastric mucosal blood flow and mucus thickness

Håkan Björne; Joel Petersson; Mia Phillipson; Eddie Weitzberg; Lena Holm; Jon O. Lundberg

Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Importance and regulation of the colonic mucus barrier in a mouse model of colitis

Joel Petersson; Olof Schreiber; Gunnar C. Hansson; Sandra J. Gendler; Anna Velcich; Jon O. Lundberg; Stefan Roos; Lena Holm; Mia Phillipson

The colonic mucus layer serves as an important barrier and prevents colonic bacteria from invading the mucosa and cause inflammation. The regulation of colonic mucus secretion is poorly understood. The aim of this study was to investigate the role of the mucus barrier in induction of colitis. Furthermore, regulation of mucus secretion by luminal bacterial products was studied. The colon of anesthetized Muc2(-/-), Muc1(-/-), wild-type (wt), and germ-free mice was exteriorized, the mucosal surface was visualized, and mucus thickness was measured with micropipettes. Colitis was induced by DSS (dextran sodium sulfate, 3%, in drinking water), and disease activity index (DAI) was assessed daily. The colonic mucosa of germ-free and conventionally housed mice was exposed to the bacterial products LPS (lipopolysaccharide) and PGN (peptidoglycan). After DSS induction of colitis, the thickness of the firmly adherent mucus layer was significantly thinner after 5 days and onward, which paralleled the increment of DAI. Muc2(-/-) mice, which lacked firmly adherent mucus, were predisposed to colitis, whereas Muc1(-/-) mice were protected with significantly lower DAI by DSS compared with wt mice. The mucus barrier increased in Muc1(-/-) mice in response to DSS, whereas significantly fewer T cells were recruited to the inflamed colon. Mice housed under germ-free conditions had an extremely thin adherent colonic mucus layer, but when exposed to bacterial products (PGN or LPS) the thickness of the adherent mucus layer was quickly restored to levels observed in conventionally housed mice. This study demonstrates a correlation between decreasing mucus barrier and increasing clinical symptoms during onset of colitis. Mice lacking colonic mucus (Muc2(-/-)) were hypersensitive to DSS-induced colitis, whereas Muc1(-/-) were protected, probably through the ability to increase the mucus barrier but also by decreased T cell recruitment to the afflicted site. Furthermore, the ability of bacteria to regulate the thickness of the colonic mucus was demonstrated.


Journal of Immunology | 2008

The Physiology of Leukocyte Recruitment: An In Vivo Perspective

Björn Petri; Mia Phillipson; Paul Kubes

The mechanisms of leukocyte recruitment have been studied extensively in vitro and have shed light on the basic molecular structure-function relationship of adhesion and signaling molecules involved in this essential immune response. This review will summarize how these in vitro observations extend to leukocyte behavior in inflamed blood vessels in the microcirculation. We highlight physiological results that might not have been predicted from in vitro systems. Special attention is placed on the physiology of rolling, adhesion, and intralumenal crawling in blood vessels. The importance of the glycocalyx, secondary tethers, shear, and the microenvironment are discussed. Docking structures forming rings of adhesion molecules together with a novel endothelial dome-like structure in vivo during transmigration are highlighted. Transcellular and paracellular emigration out of inflamed blood vessels is also discussed. The last section highlights leukocyte recruitment in some organs that do not always follow the accepted paradigm of leukocyte recruitment.


Free Radical Biology and Medicine | 2009

Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash.

Joel Petersson; Mattias Carlström; Olof Schreiber; Mia Phillipson; Gustaf Christoffersson; A Jägare; Stefan Roos; Emmelie Å. Jansson; A. Erik G. Persson; Jon O. Lundberg; Lena Holm

Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.


Blood | 2010

A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils

Sara Massena; Gustaf Christoffersson; Elina Hjertström; Eyal Zcharia; Israel Vlodavsky; Nora Ausmees; Charlotte Rolny; Jin-Ping Li; Mia Phillipson

During infection, chemokines sequestered on endothelium induce recruitment of circulating leukocytes into the tissue where they chemotax along chemokine gradients toward the afflicted site. The aim of this in vivo study was to determine whether a chemokine gradient was formed intravascularly and influenced intraluminal neutrophil crawling and transmigration. A chemokine gradient was induced by placing a macrophage inflammatory protein-2 (MIP-2)-containing (CXCL2) gel on the cremaster muscle of anesthetized wild-type mice or heparanase-overexpressing transgenic mice (hpa-tg) with truncated heparan sulfate (HS) side chains. Neutrophil-endothelial interactions were visualized by intravital microscopy and chemokine gradients detected by confocal microscopy. Localized extravascular chemokine release (MIP-2 gel) induced directed neutrophil crawling along a chemotactic gradient immobilized on the endothelium and accelerated their recruitment into the target tissue compared with homogeneous extravascular chemokine concentration (MIP-2 superfusion). Endothelial chemokine sequestration occurred exclusively in venules and was HS-dependent, and neutrophils in hpa-tg mice exhibited random crawling. Despite similar numbers of adherent neutrophils in hpa-tg and wild-type mice, the altered crawling in hpa-tg mice was translated into decreased number of emigrated neutrophils and ultimately decreased the ability to clear bacterial infections. In conclusion, an intravascular chemokine gradient sequestered by endothelial HS effectively directs crawling leukocytes toward transmigration loci close to the infection site.


PLOS ONE | 2012

Female Mice are Protected against High-Fat Diet Induced Metabolic Syndrome and Increase the Regulatory T Cell Population in Adipose Tissue

Ulrika Pettersson; Tomas Waldén; Per-Ola Carlsson; Leif Jansson; Mia Phillipson

Sex differences in obesity-induced complications such as type 2 diabetes have been reported. The aim of the study was to pinpoint the mechanisms resulting in different outcome of female and male mice on a high-fat diet (HFD). Mice fed control or HFD were monitored for weight, blood glucose, and insulin for 14 weeks. Circulating chemokines, islet endocrine function and blood flow, as well as adipose tissue populations of macrophages and regulatory T-lymphocytes (Treg) were thereafter assessed. Despite similar weight (43.8±1.0 and 40.2±1.5 g, respectively), male but not female mice developed hyperinsulinemia on HFD as previously described (2.5±0.7 and 0.5±0.1 pmol/l, respectively) consistent with glucose intolerance. Male mice also exhibited hypertrophic islets with intact function in terms of insulin release and blood perfusion. Low-grade, systemic inflammation was absent in obese female but present in obese male mice (IL-6 and mKC, males: 77.4±17 and 1795±563; females: 14.6±4.9 and 240±22 pg/ml), and the population of inflammatory macrophages was increased in intra-abdominal adipose tissues of high-fat-fed male but not female mice. In contrast, the anti-inflammatory Treg cell population increased in the adipose tissue of female mice in response to weight gain, while the number decreased in high-fat-fed male mice. In conclusion, female mice are protected against HFD-induced metabolic changes while maintaining an anti-inflammatory environment in the intra-abdominal adipose tissue with expanded Treg cell population, whereas HFD-fed male mice develop adipose tissue inflammation, glucose intolerance, hyperinsulinemia, and islet hypertrophy.


Blood | 2012

VEGF-A recruits a proangiogenic MMP-9–delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue

Gustaf Christoffersson; Evelina Vågesjö; Jennifer Vandooren; Majken Lidén; Sara Massena; Rachel B. Reinert; Marcela Brissova; Alvin C. Powers; Ghislain Opdenakker; Mia Phillipson

Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.

Collaboration


Dive into the Mia Phillipson's collaboration.

Top Co-Authors

Avatar

Lena Holm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Roos

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge