Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eveline Snelders is active.

Publication


Featured researches published by Eveline Snelders.


PLOS Medicine | 2008

Emergence of Azole Resistance in Aspergillus fumigatus and Spread of a Single Resistance Mechanism

Eveline Snelders; Henrich A.L. van der Lee; Judith Kuijpers; Anthonius J. M. M. Rijs; János Varga; Robert A. Samson; Emilia Mellado; A. Rogier T. Donders; Willem J. G. Melchers; Paul E. Verweij

Background Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured from patients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus is unknown. We investigated the prevalence and spread of azole resistance using our culture collection that contained A. fumigatus isolates collected between 1994 and 2007. Methods and Findings We investigated the prevalence of itraconazole (ITZ) resistance in 1,912 clinical A. fumigatus isolates collected from 1,219 patients in our University Medical Centre over a 14-y period. The spread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients, from 28 other medical centres in The Netherlands and 317 isolates from six other countries. The isolates were characterized using phenotypic and molecular methods. The electronic patient files were used to determine the underlying conditions of the patients and the presence of invasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases were observed after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with two copies of a 34-bp sequence in tandem in the gene promoter (TR/L98H), was found to be the dominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolates were genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to be responsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found in isolates from 13 patients (12.8%) from nine other medical centres in The Netherlands, of which 69% harboured the TR/L98H substitution, and in six isolates originating from four other countries. Conclusions Azole resistance has emerged in A. fumigatus and might be more prevalent than currently acknowledged. The presence of a dominant resistance mechanism in clinical isolates suggests that isolates with this mechanism are spreading in our environment.


Lancet Infectious Diseases | 2009

Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?

Paul E. Verweij; Eveline Snelders; Gert H. J. Kema; Emilia Mellado; Willem J. G. Melchers

Invasive aspergillosis due to multi-azole-resistant Aspergillus fumigatus has emerged in the Netherlands since 1999, with 6.0-12.8% of patients harbouring resistant isolates. The presence of a single resistance mechanism (denoted by TR/L98H), which consists of a substitution at codon 98 of cyp51A and a 34-bp tandem repeat in the gene-promoter region, was found in over 90% of clinical A fumigatus isolates. This is consistent with a route of resistance development through exposure to azole compounds in the environment. Indeed, TR/L98H A fumigatus isolates were cultured from soil and compost, were shown to be cross-resistant to azole fungicides, and genetically related to clinical resistant isolates. Azoles are abundantly used in the environment and the presence of A fumigatus resistant to medical triazoles is a major challenge because of the possibility of worldwide spread of resistant isolates. Reports of TR/L98H in other European countries indicate that resistance might already be spreading.


Emerging Infectious Diseases | 2011

Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009.

Jan W. M. van der Linden; Eveline Snelders; Greetje A. Kampinga; Bart J. A. Rijnders; Eva Mattsson; Yvette J. Debets-Ossenkopp; Ed J. Kuijper; Frank H. van Tiel; Willem J. G. Melchers; Paul E. Verweij

The prevalence and spread of azole resistance in clinical Aspergillus fumigatus isolates in the Netherlands are currently unknown. Therefore, we performed a prospective nationwide multicenter surveillance study to determine the effects of resistance on patient management strategies and public health. From June 2007 through January 2009, all clinical Aspergillus spp. isolates were screened for itraconazole resistance. In total, 2,062 isolates from 1,385 patients were screened; the prevalence of itraconazole resistance in A. fumigatus in our patient cohort was 5.3% (range 0.8%-9.5%). Patients with a hematologic or oncologic disease were more likely to harbor an azole-resistant isolate than were other patient groups (p<0.05). Most patients (64.0%) from whom a resistant isolate was identified were azole naive, and the case-fatality rate of patients with azole-resistant invasive aspergillosis was 88.0%. Our study found that multiazole resistance in A. fumigatus is widespread in the Netherlands and is associated with a high death rate for patients with invasive aspergillosis.


Applied and Environmental Microbiology | 2009

Possible Environmental Origin of Resistance of Aspergillus fumigatus to Medical Triazoles

Eveline Snelders; Robert A. G. Huis in 't Veld; Anthonius J. M. M. Rijs; Gert H. J. Kema; Willem J. G. Melchers; Paul E. Verweij

ABSTRACT We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in azole-treated patients. We investigated if A. fumigatus isolates resistant to medical triazoles are present in our environment by sampling the hospital indoor environment and soil from the outdoor environment. Antifungal susceptibility, resistance mechanisms, and genetic relatedness were compared with those of azole-resistant clinical isolates collected in a previous study. Itraconazole-resistant A. fumigatus (five isolates) was cultured from the indoor hospital environment as well as from soil obtained from flower beds in proximity to the hospital (six isolates) but never from natural soil. Additional samples of commercial compost, leaves, and seeds obtained from a garden center and a plant nursery were also positive (four isolates). Cross-resistance was observed for voriconazole, posaconazole, and the azole fungicides metconazole and tebuconazole. Molecular analysis showed the presence of the dominant resistance mechanism, which was identical to that found in clinical isolates, in 13 of 15 environmental isolates, and it showed that environmental and clinical isolates were genetically clustered apart from nonresistant isolates. Patients with azole-resistant aspergillosis might have been colonized with azole-resistant isolates from the environment.


PLOS ONE | 2012

Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus

Eveline Snelders; Simone M. T. Camps; Anna Karawajczyk; Gijs Schaftenaar; Gert H. J. Kema; Henrich A. van der Lee; Corné H. W. Klaassen; Willem J. G. Melchers; Paul E. Verweij

Background Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs. Methods and Findings Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. Conclusions Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs.


PLOS ONE | 2010

Development of Azole Resistance in Aspergillus fumigatus during Azole Therapy Associated with Change in Virulence

Maiken Cavling Arendrup; Eleftheria Mavridou; Klaus Leth Mortensen; Eveline Snelders; Niels Frimodt-Møller; Humara Khan; Willem J. G. Melchers; Paul E. Verweij

Four sequential Aspergillus fumigatus isolates from a patient with chronic granulomatous disease (CGD) eventually failing azole-echinocandin combination therapy were investigated. The first two isolates (1 and 2) were susceptible to antifungal azoles, but increased itraconazole, voriconazole and posaconazole MICs were found for the last two isolates (3 and 4). Microsatellite typing showed that the 4 isolates were isogenic, suggesting that resistance had been acquired during azole treatment of the patient. An immunocompromised mouse model confirmed that the in vitro resistance corresponded with treatment failure. Mice challenged with the resistant isolate 4 failed to respond to posaconazole therapy, while those infected by susceptible isolate 2 responded. Posaconazole-anidulafungin combination therapy was effective in mice challenged with isolate 4. No mutations were found in the Cyp51A gene of the four isolates. However, expression experiments of the Cyp51A showed that the expression was increased in the resistant isolates, compared to the azole-susceptible isolates. The microscopic morphology of the four isolates was similar, but a clear alteration in radial growth and a significantly reduced growth rate of the resistant isolates on solid and in broth medium was observed compared to isolates 1 and 2 and to unrelated wild-type controls. In the mouse model the virulence of isolates 3 and 4 was reduced compared to the susceptible ones and to wild-type controls. For the first time, the acquisition of azole resistance despite azole-echinocandin combination therapy is described in a CGD patient and the resistance demonstrated to be directly associated with significant change of virulence.


Antimicrobial Agents and Chemotherapy | 2010

Azole Resistance Profile of Amino Acid Changes in Aspergillus fumigatus CYP51A Based on Protein Homology Modeling

Eveline Snelders; Anna Karawajczyk; Gijs Schaftenaar; Paul E. Verweij; Willem J. G. Melchers

ABSTRACT Molecular studies have shown that the majority of azole resistance in Aspergillus fumigatus is associated with amino acid substitutions in the cyp51A gene. To obtain insight into azole resistance mutations, the cyp51A gene of 130 resistant and 76 susceptible A. fumigatus isolates was sequenced. Out of 130 azole-resistant isolates, 105 contained a tandem repeat of 34 bp in the promoter region and a leucine-to-histidine substitution in codon 98 (designated TR/L98H). Additionally, in 12 of these TR/L98H resistant isolates, the mutations S297T and F495I were found, and in 1 isolate, the mutation F495I was found. In eight azole-resistant isolates, known azole resistance mutations were detected in codon G54, G138, or M220. In three azole-susceptible isolates, the mutation E130D, L252L, or S400I was found and in 13 azole-susceptible isolates but also in 1 azole-resistant isolate, the mutations F46Y, G98G, M172V, N248T, D255E, L358L, E427K, and C454C were found. All of the nonsynonymous mutations, apart from the mutations in codons G54, G138, and M220 and L98H, were located at the periphery of the protein, as determined by a structural model of the A. fumigatus Cyp51A protein, and were predicted neither to interact with azole compounds nor to affect structural integrity. Therefore, this wide diversity of mutations in the cyp51A gene in azole-susceptible A. fumigatus isolates is not correlated with azole resistance. Based on the Cyp51A protein homology model, the potential correlation of a mutation to azole resistance can be predicted.


PLOS ONE | 2012

Discovery of a hapE Mutation That Causes Azole Resistance in Aspergillus fumigatus through Whole Genome Sequencing and Sexual Crossing

Simone M. T. Camps; Bas E. Dutilh; Maiken Cavling Arendrup; Antonius J. M. M. Rijs; Eveline Snelders; Martijn A. Huynen; Paul E. Verweij; Willem J. G. Melchers

Azole compounds are the primary therapy for patients with diseases caused by Aspergillus fumigatus. However, prolonged treatment may cause resistance to develop, which is associated with treatment failure. The azole target cyp51A is a hotspot for mutations that confer phenotypic resistance, but in an increasing number of resistant isolates the underlying mechanism remains unknown. Here, we report the discovery of a novel resistance mechanism, caused by a mutation in the CCAAT-binding transcription factor complex subunit HapE. From one patient, four A. fumigatus isolates were serially collected. The last two isolates developed an azole resistant phenotype during prolonged azole therapy. Because the resistant isolates contained a wild type cyp51A gene and the isolates were isogenic, the complete genomes of the last susceptible isolate and the first resistant isolate (taken 17 weeks apart) were sequenced using Illumina technology to identify the resistance conferring mutation. By comparing the genome sequences to each other as well as to two A. fumigatus reference genomes, several potential non-synonymous mutations in protein-coding regions were identified, six of which could be confirmed by PCR and Sanger sequencing. Subsequent sexual crossing experiments showed that resistant progeny always contained a P88L substitution in HapE, while the presence of the other five mutations did not correlate with resistance in the progeny. Cloning the mutated hapE gene into the azole susceptible akuB KU80 strain showed that the HapE P88L mutation by itself could confer the resistant phenotype. This is the first time that whole genome sequencing and sexual crossing strategies have been used to find the genetic basis of a trait of interest in A. fumigatus. The discovery may help understand alternate pathways for azole resistance in A. fumigatus with implications for the molecular diagnosis of resistance and drug discovery.


Future Microbiology | 2011

Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis?

Eveline Snelders; Willem J. G. Melchers; Paul E. Verweij

Azole resistance is emerging in Aspergillus fumigatus isolates. The exact mechanism of evolution of azole resistance has not been fully elucidated yet but increasing evidence indicates a role for azole fungicide used in agriculture. Patients confronted with an invasive fungal infection from an azole-resistant A. fumigatus isolate will fail azole treatment. Azole resistance in A. fumigatus isolates impacts the management of invasive aspergillosis (IA) since the azoles are the primary agents used for prophylaxis and treatment. Because A. fumigatus will always be present in our environment and also in the close vicinity of patients at risk for IA, there is an urgent need to understand the evolution of the increasing azole resistance in A. fumigatus. Thereby, induction of azole resistance or its spread can possibly be prevented to allow future treatment of A. fumigatus IA.


Fungal Genetics and Biology | 2011

The structure-function relationship of the Aspergillus fumigatuscyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance

Eveline Snelders; Anna Karawajczyk; Rob Verhoeven; Hanka Venselaar; Gijs Schaftenaar; Paul E. Verweij; Willem J. G. Melchers

Since 1998, the rapid emergence of multi-azole-resistance (MAR) was observed in Aspergillus fumigatus in the Netherlands. Two dominant mutations were found in the cyp51A gene, a 34bp tandem repeat (TR) in the promoter region combined with a leucine to histidine substitution at codon 98 (L98H). In this study, we show that molecular dynamics simulations combined with site-directed mutagenesis of amino acid substitutions in the cyp51A gene, correlate to the structure-function relationship of the L98H substitution conferring to MAR in A. fumigatus. Because of a L98H directed change in the flexibility of the loops, that comprise a gate-like structure in the protein, the capacity of the two ligand entry channels is modified by narrowing the diameter and thereby binding of azoles is obstructed. Moreover, the L98H induced relocation of tyrosine 121 and tyrosine 107 seems to be related to the MAR phenotype, without affecting the biological activity of the CYP51A protein. Site-directed mutagenesis showed that both the 34bp TR and the L98H mutation are required to obtain the MAR phenotype. Furthermore, the amino acid leucine in codon 98 in A. fumigatus is highly conserved and important for maintaining the structure of the CYP51A protein that is essential for azole docking.

Collaboration


Dive into the Eveline Snelders's collaboration.

Top Co-Authors

Avatar

Paul E. Verweij

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone M. T. Camps

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Anna Karawajczyk

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Gert H. J. Kema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Zoll

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Emilia Mellado

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Gijs Schaftenaar

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge