Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evelyn Perez is active.

Publication


Featured researches published by Evelyn Perez.


Cell Metabolism | 2008

Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span

Kevin J. Pearson; Joseph A. Baur; Kaitlyn N. Lewis; Leonid Peshkin; Nathan L. Price; Nazar Labinskyy; William R. Swindell; Davida Kamara; Robin K. Minor; Evelyn Perez; Hamish A. Jamieson; Yongqing Zhang; Stephen R. Dunn; Kumar Sharma; Nancy Pleshko; Laura A. Woollett; Anna Csiszar; Yuji Ikeno; David G. Le Couteur; Peter J. Elliott; Kevin G. Becker; Plácido Navas; Donald K. Ingram; Norman S. Wolf; Zoltan Ungvari; David A. Sinclair; Rafael de Cabo

A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.


Cell | 2007

Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival

Hongying Yang; Tianle Yang; Joseph A. Baur; Evelyn Perez; Takashi Matsui; Juan Jose Carmona; Dudley W. Lamming; Nadja C. de Souza-Pinto; Vilhelm A. Bohr; Anthony Rosenzweig; Rafael de Cabo; Anthony A. Sauve; David A. Sinclair

A major cause of cell death caused by genotoxic stress is thought to be due to the depletion of NAD(+) from the nucleus and the cytoplasm. Here we show that NAD(+) levels in mitochondria remain at physiological levels following genotoxic stress and can maintain cell viability even when nuclear and cytoplasmic pools of NAD(+) are depleted. Rodents fasted for 48 hr show increased levels of the NAD(+) biosynthetic enzyme Nampt and a concomitant increase in mitochondrial NAD(+). Increased Nampt provides protection against cell death and requires an intact mitochondrial NAD(+) salvage pathway as well as the mitochondrial NAD(+)-dependent deacetylases SIRT3 and SIRT4. We discuss the relevance of these findings to understanding how nutrition modulates physiology and to the evolution of apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Mitochondrial localization of estrogen receptor β

Shao-Hua Yang; Ran Liu; Evelyn Perez; Yi Wen; Stanley M. Stevens; Thomas Valencia; Anne-Marie Brun-Zinkernagel; Laszlo Prokai; Yvonne Will; James A. Dykens; Peter Koulen; James W. Simpkins

Estrogen receptors (ERs) are believed to be ligand-activated transcription factors belonging to the nuclear receptor superfamily, which on ligand binding translocate into the nucleus and activate gene transcription. To date, two ERs have been identified: ERα and ERβ. ERα plays major role in the estrogen-mediated genomic actions in both reproductive and nonreproductive tissue, whereas the function of ERβ is still unclear. In this study, we used immunocytochemistry, immunoblotting, and proteomics to demonstrate that ERβ localizes to the mitochondria. In immunocytochemistry studies, ERβ was detected with two ERβ antibodies and found to colocalize almost exclusively with a mitochondrial marker in rat primary neuron, primary cardiomyocyte, and a murine hippocampal cell line. The colocalization of ERβ and mitochondrial markers was identified by both fluorescence and confocal microscopy. No translocation of ERβ into the nucleus on 17β-estradiol treatment was seen by using immunocytochemistry. Immunoblotting of purified human heart mitochondria showed an intense signal of ERβ, whereas no signals for nuclear and other organelle markers were found. Finally, purified human heart mitochondrial proteins were separated by SDS/PAGE. The 50,000–65,000 Mr band was digested with trypsin and subjected to matrix-assisted laser desorption/ionization mass spectrometric analysis, which revealed seven tryptic fragments that matched with those of ERβ. In summary, this study demonstrated that ERβ is localized to mitochondria, suggesting a role for mitochondrial ERβ in estrogen effects on this important organelle.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction

Kevin J. Pearson; Kaitlyn N. Lewis; Nathan L. Price; Joy W. Chang; Evelyn Perez; Maria V Cascajo; Kellie L.K. Tamashiro; Suresh Poosala; Anna Csiszar; Zoltan Ungvari; Thomas W. Kensler; Masayuki Yamamoto; Josephine M. Egan; Dan L. Longo; Donald K. Ingram; Plácido Navas; Rafael de Cabo

Caloric restriction (CR) is the most potent intervention known to both protect against carcinogenesis and extend lifespan in laboratory animals. A variety of anticarcinogens and CR mimetics induce and activate the NF-E2-related factor 2 (Nrf2) pathway. Nrf2, in turn, induces a number of antioxidative and carcinogen-detoxifying enzymes. Thus, Nrf2 offers a promising target for anticarcinogenesis and antiaging interventions. We used Nrf2-disrupted (KO) mice to examine its role on the biological effects of CR. Here, we show that Nrf2 is responsible for most of the anticarcinogenic effects of CR, but is dispensable for increased insulin sensitivity and lifespan extension. Nrf2-deficient mice developed tumors more readily in response to carcinogen exposure than did WT mice, and CR was ineffective in suppressing tumors in the KO mice. However, CR extended lifespan and increased insulin sensitivity similarly in KO and WT mice. These findings identify a molecular pathway that dissociates the prolongevity and anticarcinogenic effects of CR.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection

Laszlo Prokai; Katalin Prokai-Tatrai; Pál Perjési; Alevtina D. Zharikova; Evelyn Perez; Ran Liu; James W. Simpkins

Substantial evidence now exists that intrinsic free-radical scavenging contributes to the receptor-independent neuroprotective effects of estrogens. This activity is inherently associated with the presence of a phenolic A-ring in the steroid. We report a previously unrecognized antioxidant cycle that maintains the “chemical shield” raised by estrogens against the most harmful reactive oxygen species, the hydroxyl radical (•OH) produced by the Fenton reaction. In this cycle, the capture of •OH was shown to produce a nonphenolic quinol with no affinity to the estrogen receptors. This quinol is then rapidly converted back to the parent estrogen via an enzyme-catalyzed reduction by using NAD(P)H as a coenzyme (reductant) and, unlike redox cycling of catechol estrogens, without the production of reactive oxygen species. Due to this process, protection of neuronal cells against oxidative stress is also possible by quinols that essentially act as prodrugs for the active hormone. We have shown that the quinol obtained from a 17β-estradiol derivative was, indeed, able to attenuate glutamate-induced oxidative stress in cultured hippocampus-derived HT-22 cells. Estrone quinol was also equipotent with its parent estrogen in reducing lesion volume in ovariectomized rats after transient middle carotid artery occlusion followed by a 24-h reperfusion. These findings may establish the foundation for a rational design of neuroprotective antioxidants focusing on steroidal quinols as unique molecular leads.


Brain Research | 2004

Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia

Yi Wen; Shao-Hua Yang; Ran Liu; Evelyn Perez; Kun Don Yi; Peter Koulen; James W. Simpkins

The protective effects of estrogens have been widely reported in a number of animal and cell culture models, but the molecular mechanisms of this potent neuroprotective activity are not well understood. Both in vitro and in vivo studies indicate that in the central nervous system and peripheral tissues, estrogen treatment reduces cytokine production and inflammatory responses. Nuclear factor-kappa B (NFkappaB) plays an essential role in the regulation of post-ischemic inflammation, which is detrimental to recovery from an ischemic stroke. We investigated the role of NFkappaB in neuronal survival in rats that received transient middle cerebral artery (MCA) occlusion, and observed that this transient cerebral ischemia induced substantial apoptosis and inflammatory responses, including IkappaB phosphorylation, NF-kappaB activation and iNOS over-expression. 17 beta-estradiol (E2) treatment produced strong protective effects by reducing infarct volume, neuronal apoptosis, and inflammatory responses. These findings provide evidence for a novel molecular and cellular interaction between the sex hormone and the immunoresponsive system. These studies also provide evidence that suppression of post-ischemic inflammation may play a critical role in estrogen-mediated neuroprotection.


Brain Research | 2007

Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells.

Xiaofei Wang; Evelyn Perez; Ran Liu; Liang-Jun Yan; Robert T. Mallet; Shao-Hua Yang

Oxidative stress is implicated in neurodegenerative diseases including stroke, Alzheimers disease and Parkinsons disease, and has been extensively studied as a potential target for therapeutic intervention. Pyruvate, a natural metabolic intermediate and energy substrate, exerts antioxidant effects in brain and other tissues susceptible to oxidative stress. We tested the protective effects of pyruvate on hydrogen peroxide (H(2)O(2)) toxicity in human neuroblastoma SK-N-SH cells and the mechanisms underlying its protection. Hydrogen peroxide insult resulted in 85% cell death, but co-treatment with pyruvate dose-dependently attenuated cell death. At concentrations of >or=1 mM, pyruvate totally blocked the cytotoxic effects of H(2)O(2). Pyruvate exerted its protective effects even when its administration was delayed up to 2 h after H(2)O(2) insult. As a scavenger of reactive oxygen species (ROS), pyruvate dose-dependently attenuated H(2)O(2)-induced ROS formation, assessed from 2,7-dichlorofluorescein diacetate fluorescence. Furthermore, pyruvate suppressed superoxide production by submitochondrial particles, and attenuated oxidative stress-induced collapse of the mitochondrial membrane potential. Collectively, these results suggest that pyruvate protects neuronal cells through its antioxidant actions on mitochondria.


Current Drug Targets - Cns & Neurological Disorders | 2005

Mitochondria Play a Central Role in Estrogen-Induced Neuroprotection

James W. Simpkins; Jian Wang; Xiaofei Wang; Evelyn Perez; Laszlo Prokai; James A. Dykens

Oxidative stress, bioenergetic impairment and mitochondrial failure have all been implicated in the etiology of neurodegenerative diseases such as Alzheimers disease (AD), Parkinsons disease (PD) and Huntingtons disease (HD), as well as retinal degeneration in glaucoma and retinitis pigmentosa. Moreover, at least 75 debilitating, and often lethal, diseases are directly attributable to deletions or mutations in mitochondrial DNA, or in nuclear-encoded proteins destined for delivery to the mitochondria. Such widespread mitochondrial involvement in disease reflects the regulatory position mitochondrial failure plays in both acute necrotic cell death, and in the less catastrophic process of apoptosis. The potent feminizing hormone, 17 beta-estradiol (E2), has shown cytoprotective activities in a host of cell and animal models of stroke, myocardial infarct and neurodegenerative diseases. The discovery that 17alpha-estradiol, an isomer of E2, is equally as cytoprotective as E2 yet is >200-fold less active as a hormone, has permitted development of novel, more potent analogs where cytoprotection is independent of hormonal potency. Studies of structure-activity-relationships, glutathione interactions and mitochondrial function have led to a mechanistic model in which these steroidal phenols intercalate into cell membranes where they block lipid peroxidation reactions, and are in turn recycled via glutathione. Such a mechanism would be particularly germane in mitochondria where function is directly dependent on the impermeability of the inner membrane, and where glutathione levels are maintained at extraordinarily high 8-10mM concentrations. Indeed, the parental estrogens and novel analogs stabilize mitochondria under Ca(2+) loading otherwise sufficient to collapse membrane potential. The cytoprotective and mitoprotective potencies for 14 of these analogs are significantly correlated, suggesting that these compounds prevent cell death in large measure by maintaining functionally intact mitochondria. This therapeutic strategy is germane not only to sudden mitochondrial failure in acute circumstances, such as during a stroke or myocardial infarction, but also to gradual mitochondrial dysfunction associated with chronic degenerative disorders such as AD, PD and HD.


Molecular Pharmacology | 2006

Neuroprotective Effects of 17β-Estradiol and Nonfeminizing Estrogens against H2O2 Toxicity in Human Neuroblastoma SK-N-SH Cells

Xiaofei Wang; James A. Dykens; Evelyn Perez; Ran Liu; Shao-Hua Yang; Douglas F. Covey; James W. Simpkins

Neuroprotective effects of estrogens have been shown in various in vitro and in vivo models, but the mechanisms underlying protection by estrogen are not clear. Mounting evidence suggests antioxidant effects contribute to the neuroprotective effects of estrogens. In the present study, we assessed the protective effects of estrogens against H2O2-induced toxicity in human neuroblastoma cells and the potential mechanisms involved in this protection. We demonstrate that 17β-estradiol (17β-E2) increases cell survival against H2O2 toxicity in human neuroblastoma cells. 17β-E2 effectively reduced lipid peroxidation induced by 5-min H2O2 exposure. Furthermore, 17β-E2 exerts the protective effects by maintaining intracellular Ca2+ homeostasis, attenuating ATP depletion, ablating mitochondrial calcium overloading, and preserving mitochondrial membrane potential. Two nonfeminizing estrogens, 17α- and ent-estradiol, were as effective as 17β-E2 in increasing cell survival, alleviating lipid peroxidation, preserving mitochondrial function, and maintaining intracellular glutathione levels and Ca2+ homeostasis against H2O2 insult. Moreover, the estrogen receptor antagonist fulvestrant (ICI 182,780) did not block effects of 17β-E2, but increased cell survival and blunted intracellular Ca2+ increases. However, these estrogens failed to reduce cytosolic reactive oxygen species, even at concentrations as high as 10 μM. In conclusion, estrogens exert protective effects against oxidative stress by inhibiting lipid peroxidation and subsequently preserving Ca2+ homeostasis, mitochondrial membrane potential, and ATP levels.


Brain Research | 2005

17β-Estradiol attenuates blood–brain barrier disruption induced by cerebral ischemia–reperfusion injury in female rats

Ran Liu; Yi Wen; Evelyn Perez; Xiaofei Wang; Arthur L. Day; James W. Simpkins; Shao Hua Yang

Disruption of blood-brain barrier (BBB), mediated through matrix metalloproteinases (MMPs), is a critical event during cerebral ischemia. While neuroprotective effects of estrogens have been well established in ischemic stroke models, the effects of estrogens on BBB integrity remain to be elucidated. In the present study, we determined effects of 17beta-estradiol (E2) on BBB disruption induced by transient focal cerebral ischemia and its effects on MMP2 and MMP9 activation. Transient cerebral ischemia was induced by middle cerebral artery (MCA) occlusion for 1 h followed by reperfusion in ovariectomized rats. E2 (100 microg/kg) or vehicle was administered 2 h before MCA occlusion. BBB integrity was determined by fluorescent detection of extravasated Evans blue. In separate experiments, effect of E2 on MMP2 and MMP9 expression and activation was determined by immunoblot and MMPs activity assay. E2 treatment prevented more than 50% and 30% of BBB disruption in the ischemic cortex and subcortex at 4 h after reperfusion, respectively. MMP2 and MMP9 expression was elevated at 2 h and peaked at 4 h after reperfusion in the ischemic cortex, which was markedly reduced by E2 treatment. E2 treatment also attenuated the increase of MMPs activity induced by ischemia-reperfusion injury. In conclusion, estrogens could attenuate BBB disruption induced by transient cerebral ischemia, by inhibition of MMP2 and MMP9 activation. Our results suggest an important role of estrogens as multiple targeting protectants against ischemic stroke on cellular as well as vascular components of central nervous system.

Collaboration


Dive into the Evelyn Perez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Liu

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Shao-Hua Yang

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Douglas F. Covey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yi Wen

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Xiaofei Wang

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Becker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongqing Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rafael de Cabo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zu Yun Cai

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge