Evelyne Chaput
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evelyne Chaput.
Journal of Lipid Research | 2010
Eric J. Niesor; Christine Magg; Naoto Ogawa; Hiroshi Okamoto; Elisabeth von der Mark; Hugues Matile; Georg Schmid; Roger G. Clerc; Evelyne Chaput; Denise Blum-Kaelin; Walter Huber; Ralf Thoma; Philippe Pflieger; Makoto Kakutani; Daisuke Takahashi; Gregor Dernick; Cyrille Maugeais
The mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity. CETP-induced pre-β-HDL formation in vitro in human plasma was unchanged by dalcetrapib ≤3 µM and increased at 10 µM. A dose-dependent inhibition of pre-β-HDL formation by torcetrapib and anacetrapib (0.1 to 10 µM) suggested that dalcetrapib modulates CETP activity. In hamsters injected with [3H]cholesterol-labeled autologous macrophages, and given dalcetrapib (100 mg twice daily), torcetrapib [30 mg once daily (QD)], or anacetrapib (30 mg QD), only dalcetrapib significantly increased fecal elimination of both [3H]neutral sterols and [3H]bile acids, whereas all compounds increased plasma HDL-[3H]cholesterol. These data suggest that modulation of CETP activity by dalcetrapib does not inhibit CETP-induced pre-β-HDL formation, which may be required to increase reverse cholesterol transport.
Bioorganic & Medicinal Chemistry Letters | 2011
Hans Richter; Gregory Martin Benson; Konrad Bleicher; Denise Blum; Evelyne Chaput; N. Clemann; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor
Structure-guided lead optimization of recently described benzimidazolyl acetamides addressed the key liabilities of the previous lead compound 1. These efforts culminated in the discovery of 4-{(S)-2-[2-(4-chloro-phenyl)-5,6-difluoro-benzoimidazol-1-yl]-2-cyclohexyl-acetylamino}-3-fluoro-benzoic acid 7g, a highly potent and selective FXR agonist with excellent physicochemical and ADME properties and potent lipid lowering activity after oral administration to LDL receptor deficient mice.
Bioorganic & Medicinal Chemistry Letters | 2011
Hans Richter; Gregory Martin Benson; Denise Blum; Evelyne Chaput; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor; Konrad Bleicher
Herein we describe the synthesis and structure activity relationship of a new class of FXR agonists identified from a high-throughput screening campaign. Further optimization of the original hits led to molecules that were highly active in an LDL-receptor KO model for dyslipidemia. The most promising candidate is discussed in more detail.
Biochemical and Biophysical Research Communications | 2002
Christiane Legendre; Elisabeth Caussé; Evelyne Chaput; Robert Salvayre; Thierry Pineau; Alan Edgar
Elevated levels of plasma homocysteine (Hcy) are associated with increased risk of cardiovascular disease though it is uncertain whether increases in Hcy represent a cause or a consequence of the disease process. Plasma Hcy exists in reduced, free oxidized, and protein-bound forms, that together comprise total Hcy (tHcy). Free reduced Hcy is thought to be the atherogenic, though minor, sub-fraction of tHcy. Recent reports have indicated that fenofibrate and other fibrates are capable of moderately increasing plasma tHcy. As many of the effects of fibrates are known to be mediated by the nuclear receptor PPARalpha, we determined the effect of fenofibrate on tHcy in PPARalpha-deficient mice. We further examined the effect of fenofibrate and fenofibrate plus folate supplementation on total as well as protein-bound Hcy in rats. Fenofibrate significantly increased serum tHcy in wild-type mice but not in PPARalpha deficient mice. In rats, fenofibrate increased serum tHcy by 69%, while the co-administration of folate with fenofibrate increased tHcy by only 7%. In spite of the above increase in tHcy in rats, only the protein-bound fraction of Hcy was increased. In a further study, fenofibrate also induced a significant increase in tHcy, while in spite of this, ex vivo peroxidation of VLDL+LDL was beneficially lowered and the lag time prolonged. In summary, fenofibrate increases serum tHcy in rodents in a PPARalpha-dependent manner. The increase in rats is solely due to protein-bound Hcy as atherogenic, reduced Hcy was unchanged. While awaiting corroboration in human, our results suggest that the extent and mechanism of the increase in total Hcy in patients treated with fenofibrate should not a priori be associated with relevant risk.
Journal of Lipid Research | 2013
Christophe Gardes; Evelyne Chaput; Andreas Staempfli; Denise Blum; Hans Richter; G. Martin Benson
Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr −/−) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr −/− mice, the predominant bile acid changed from cholate to the more hydrophilic β-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr −/− mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged.
Atherosclerosis | 2011
Eric J. Niesor; Evelyne Chaput; Andreas Staempfli; Denise Blum; Michael Derks; David Kallend
OBJECTIVE Subjects with high HDL-C show elevated plasma markers of cholesterol absorption and reduced markers of cholesterol synthesis. We evaluated the effect of dalcetrapib, a cholesteryl ester transfer protein modulator, on markers of cholesterol homeostasis in healthy subjects. METHODS Dalcetrapib was administered daily with or without ezetimibe in a randomized, open-label, crossover study in 22 healthy subjects over three 7-day periods: dalcetrapib 900 mg, ezetimibe 10mg, dalcetrapib 900 mg plus ezetimibe 10mg. Plasma non-cholesterol sterols lathosterol and desmosterol (cholesterol synthesis markers) and campesterol, β-sitosterol and cholestanol (intestinal cholesterol absorption markers) were measured. A hamster model was used to compare the effect of dalcetrapib and torcetrapib with or without ezetimibe on these markers and determine the effect of dalcetrapib on cholesterol absorption. RESULTS Dalcetrapib increased campesterol, β-sitosterol, and cholestanol by 27% (p = 0.001), 32% (p < 0.001), and 12% (p = 0.03), respectively, in man (non-cholesterol sterol/cholesterol ratio). Dalcetrapib+ezetimibe reduced campesterol by 11% (p = 0.02); β-sitosterol and cholestanol were unaffected. Lathosterol and desmosterol were unchanged with dalcetrapib, but both increased with ezetimibe alone (56-148%, p < 0.001) and with dalcetrapib + ezetimibe (32-38%, p < 0.001). In hamsters, dalcetrapib and torcetrapib increased HDL-C by 49% (p = 0.04) and 72% (p = 0.003), respectively. Unlike torcetrapib, dalcetrapib altered cholesterol homeostasis towards increased markers of cholesterol absorption; cholesterol synthesis markers were unaffected by either treatment. Dalcetrapib did not change plasma (3)H-cholesterol level but increased (3)H-cholesterol in plasma HDL vs non-HDL, after oral dosing of labeled cholesterol. CONCLUSION Dalcetrapib specifically increased markers of cholesterol absorption, most likely reflecting nascent HDL lipidation by intestinal ABCA1, without affecting markers of synthesis.
Lipids | 1999
Evelyne Chaput; Dominique Maubrou-Sanchez; Francois Bellamy; Alan D. Edgar
One of the earliest steps of atherosclerotic plaque formation is an increase of circulating apolipoprotein B-containing lipoproteins which, after infiltrating the subendothelial space, undergo oxidative modification. Fenofibrate is an effective cholesterol- and triglyceride-lowering agent which has been shown to be beneficial in the treatment of atherosclerosis. Vitamin E, or α-tocopherol, is a powerful antioxidant which has been shown in a variety of studies to prevent lipoprotein peroxidation. The purpose of the present study was to investigate the effect of fenofibrate treatment, either alone or in combination with α-tocopherol, in reducing the susceptibility of lipoproteins to oxidative modification. Rats fed a normal diet were treated for up to 27 d with fenofibrate, either alone or in combination with equimolar doses of α-tocopherol. Combined VLDL (very low density lipoproteins) and LDL (low density lipoproteins) isolated after fenofibrate treatment were more resistant to coppermediated oxidation, as assessed by conjugated diene formation. Lag time was prolonged up to 3.2-fold, while the maximal rate of diene production was significantly decreased by up to 2.2-fold. Treatment of rats with α-tocopherol alone at the selected dose had no significant effect on lag time, while the propagation rate was slightly decreased. Coadministration of fenofibrate with α-tocopherol prolonged the lag phase to a greater extent than fenofibrate alone, showing a synergistic interaction between the two compounds. Finally, the combination of fenofibrate and α-tocopherol was significantly more effective in modifying lipoprotein oxidation parameters than what was observed with α-tocopherol and bezafibrate or gemfibrozil. Thus, in addition to its well-established effects on lipoprotein concentrations and atherogenic parameters, fenofibrate reduces the susceptibility of VLDL and LDL to oxidative modification and exerts its action synergistically with α-tocopherol.
Lipids | 2014
Eric J. Niesor; Evelyne Chaput; Jean-Luc Mary; Andreas Staempfli; Andreas Topp; Andrea Stauffer; Haiyan Wang; Alexandre Durrwell
The antioxidant xanthophylls lutein and zeaxanthin are absorbed from the diet in a process involving lipoprotein formation. Selective mechanisms exist for their intestinal uptake and tissue-selective distribution, but these are poorly understood. We investigated the role of high-density lipoprotein (HDL), apolipoprotein (apo) A1 and ATP-binding cassette transporter (ABC) A1 in intestinal uptake of lutein in a human polarized intestinal cell culture and a hamster model. Animals received dietary lutein and zeaxanthin and either a liver X receptor (LXR) agonist or statin, which up- or down-regulate intestinal ABCA1 expression, respectively. The role of HDL was studied following treatment with the cholesteryl ester transfer protein (CETP) modulator dalcetrapib or the CETP inhibitor anacetrapib. In vitro, intestinal ABCA1 at the basolateral surface of enterocytes transferred lutein and zeaxanthin to apoA1, not to mature HDL. In hamsters, plasma lutein and zeaxanthin levels were markedly increased with the LXR agonist and decreased with simvastatin. Dalcetrapib, but not anacetrapib, increased plasma and liver lutein and zeaxanthin levels. ABCA1 expression and apoA1 acceptor activity are important initial steps in intestinal uptake and maintenance of lutein and zeaxanthin levels by an HDL-dependent pathway. Their absorption may be improved by physiological and pharmacological interventions affecting HDL metabolism.
Journal of Medicinal Chemistry | 2013
Stephan Röver; Mirjana Andjelkovic; Agnès Bénardeau; Evelyne Chaput; Wolfgang Guba; Paul Hebeisen; Susanne Mohr; Matthias Nettekoven; Ulrike Obst; Wolfgang Richter; Christoph Ullmer; Pius Waldmeier; Matthew Blake Wright
We identified 6-alkoxy-5-aryl-3-pyridinecarboxamides as potent CB1 receptor antagonists with high selectivity over CB2 receptors. The series was optimized to reduce lipophilicity compared to rimonabant to achieve peripherally active molecules with minimal central effects. Several compounds that showed high plasma exposures in rats were evaluated in vivo to probe the contribution of central vs peripheral CB1 agonism to metabolic improvement. Both rimonabant and 14g, a potent brain penetrant CB1 receptor antagonist, significantly reduced the rate of body weight gain. However, 14h, a molecule with markedly reduced brain exposure, had no significant effect on body weight. PK studies confirmed similarly high exposure of both 14h and 14g in the periphery but 10-fold lower exposure in the brain for 14h. On the basis of these data, which are consistent with reported effects in tissue-specific CB1 receptor KO mice, we conclude that the metabolic benefits of CB1 receptor antagonists are primarily centrally mediated as originally believed.
Journal of Lipid Research | 2011
Christophe Gardes; Denise Blum; Konrad Bleicher; Evelyne Chaput; Martin Ebeling; Peter Hartman; Corinne Handschin; Hans Richter; G. Martin Benson
It is claimed that apoA-I expression is repressed in mice by cholic acid (CA) and its taurine conjugate, taurocholic acid (TCA) via farnesoid X receptor (FXR) activation. We measured apoA-I expression in mice, hamsters, and rats treated with highly potent and selective synthetic FXR agonists or with TCA. All of the synthetic agonists bound to FXR with high affinity in a scintillation proximity assay. However, TCA did not compete with the radioligand up to the highest concentration used (100 μM). The C-site regulatory region of apoA-I, through which FXR has been reported to regulate its expression, is completely conserved across the species investigated. In both male and female human apoA-I-transgenic mice, we reproduced the previously reported strong inhibition of human apoA-I expression upon treatment with the typical supraphysiological dose of TCA used in such studies. However, in contrast to some previous reports, TCA did not repress murine apoA-I expression in the same mice. Also, more-potent and -selective FXR agonists did not affect human or murine apoA-I expression in this model. In LDL receptor-deficient mice and Golden Syrian hamsters, selective FXR agonists did not affect apoA-I expression, whereas in Wistar rats, some even increased apoA-I expression. In conclusion, selective FXR agonists do not repress apoA-I expression in rodents. Repression of human apoA-I expression by TCA in transgenic mice is probably mediated through FXR-independent mechanisms.