Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Everett J. Perkins is active.

Publication


Featured researches published by Everett J. Perkins.


Mammalian Genome | 2010

Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

Roger S. Holmes; Matthew W. Wright; Stanley J. F. Laulederkind; Laura A. Cox; Masakiyo Hosokawa; Teruko Imai; Shun Ishibashi; Richard Lehner; Masao Miyazaki; Everett J. Perkins; Phillip M. Potter; Matthew R. Redinbo; Jacques Robert; Tetsuo Satoh; Tetsuro Yamashita; Bingfan Yan; Tsuyoshi Yokoi; Rudolf Zechner; Lois J. Maltais

Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.


Drug Metabolism and Disposition | 2008

The Biotransformation of Prasugrel, a New Thienopyridine Prodrug, by the Human Carboxylesterases 1 and 2

Eric T. Williams; Karen O. Jones; G. Douglas Ponsler; Shane M. Lowery; Everett J. Perkins; Steven A. Wrighton; Kenneth J. Ruterbories; Miho Kazui; Nagy A. Farid

2-Acetoxy-5-(α-cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (prasugrel) is a novel thienopyridine prodrug with demonstrated inhibition of platelet aggregation and activation. The biotransformation of prasugrel to its active metabolite, 2-[1-[2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-mercapto-3-piperidinylidene]acetic acid (R-138727), requires ester bond hydrolysis, forming the thiolactone 2-[2-oxo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl]-1-cyclopropyl-2-(2-fluorophenyl)ethanone(R-95913), followed by cytochrome P450–mediated metabolism to the active metabolite. The presumed role of the human liver- and intestinal-dominant carboxylesterases, hCE1 and hCE2, respectively, in the conversion of prasugrel to R-95913 was determined using expressed and purified enzymes. The hydrolysis of prasugrel is at least 25 times greater with hCE2 than hCE1. Hydrolysis of prasugrel by hCE1 showed Michaelis-Menten kinetics yielding an apparent Km of 9.25 μM and an apparent Vmax of 0.725 nmol product/min/μg protein. Hydrolysis of prasugrel by hCE2 showed a mixture of Hill kinetics at low substrate concentrations and substrate inhibition at high concentrations. At low concentrations, prasugrel hydrolysis by hCE2 yielded an apparent Ks of 11.1 μM, an apparent Vmax of 19.0 nmol/min/μg, and an apparent Hill coefficient of 1.42, whereas at high concentrations, an apparent IC50 of 76.5 μM was obtained. In humans, no in vivo evidence of inhibition exists. In vitro transport studies using the intestinal Caco-2 epithelial cell model showed a high in vivo absorption potential for prasugrel and rapid conversion to R-95913. In conclusion, the human carboxylesterases efficiently mediate the conversion of prasugrel to R-95913. These data help explain the rapid appearance of R-138727 in human plasma, where maximum concentrations are observed 0.5 h after a prasugrel p.o. dose, and the rapid onset of action of prasugrel.


Journal of Medicinal Chemistry | 2009

Synthesis, Crystallization, and Biological Evaluation of an Orally Active Prodrug of Gemcitabine

David M. Bender; Jingqi Bao; Anne H. Dantzig; William D. Diseroad; Kevin L. Law; Nicholas A. Magnus; Jeffrey A. Peterson; Everett J. Perkins; Yangwei J. Pu; Susan M. Reutzel-Edens; David Michael Remick; James J. Starling; Gregory A. Stephenson; Radhe K. Vaid; Deyi Zhang; James R. McCarthy

The design, synthesis, and biological characterization of an orally active prodrug (3) of gemcitabine are described. Additionally, the identification of a novel co-crystal solid form of the compound is presented. Valproate amide 3 is orally bioavailable and releases gemcitabine into the systemic circulation after passing through the intestinal mucosa. The compound has entered clinical trials and is being evaluated as a potential new anticancer agent.


Drug Metabolism and Disposition | 2007

Pharmacokinetics, Metabolism, and Excretion of the Intestinal Peptide Transporter 1 (SLC15A1)-Targeted Prodrug (1S,2S,5R,6S)-2-[(2′S)-(2-Amino)propionyl]aminobicyclo[3.1.0.]hexen-2,6-dicarboxylic acid (LY544344) in Rats and Dogs: Assessment of First-Pass Bioactivation and Dose Linearity

Everett J. Perkins; Trent L. Abraham

The peptidyl prodrug (1S,2S,5R,6S)-2-[(2′S)-(2-Amino)propionyl]a-minobicyclo[3.1.0.]hexen-2,6-dicarboxylic acid, also known as LY544344, was discovered to improve the oral bioavailability of the parent drug (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), a potent group II metabotropic glutamate receptor agonist. This prodrug has been shown to deliver high plasma concentrations of the active drug via intestinal peptide transporter 1 (SLC15A1) (PepT1)-mediated intestinal transport and presystemic hydrolysis in preclinical species. The current data describe the pharmacokinetic behavior of LY544344 and LY354740, with a specific focus on the first-pass activation processes and dose linearity in rats and dogs. The PepT1 transporter makes an attractive prodrug target because of its high capacity and relatively broad substrate specificity. This was demonstrated by the wide dose proportionality observed in both species (up to 1000 mg/kg in rats and 140 mg/kg in dogs). After oral administration of LY544344, absorption and bioactivation were extensive and rapid, with greater than 97% of prodrug hydrolysis occurring before its appearance in the hepatic portal vein. Systemic activation was likewise extensive, with 100% conversion of a 7-mg/kg intravenous dose in dogs. Radiolabeled studies confirmed that hydrolysis to LY354740 was the only metabolic pathway and that the excretion pattern of the active drug was not altered by administration of the prodrug. These results demonstrate the nearly ideal prodrug properties of LY544344 and further validate the utility of the peptide transporter-directed approach to prodrug design.


Drug Metabolism and Disposition | 2011

Characterization of the Expression and Activity of Carboxylesterases 1 and 2 from the Beagle Dog, Cynomolgus Monkey, and Human

Eric T. Williams; James A. Bacon; David M. Bender; Jennifer J. Lowinger; Wen-Kai Guo; Mariam E. Ehsani; Xiliang Wang; He Wang; Yue-Wei Qian; Kenneth J. Ruterbories; Steven A. Wrighton; Everett J. Perkins

The carboxylesterases (CESs) are a family of serine hydrolases that hydrolyze compounds containing an ester, amide, or thioester. In humans, two dominant forms, CES1 and CES2, are highly expressed in organs of first-pass metabolism and play an important role in xenobiotic metabolism. The current study was conducted to better understand species-related differences in substrate selectivity and tissue expression of these enzymes. To elucidate potential similarities and differences among these enzymes, a series of 4-nitrophenyl esters and a series of gemcitabine prodrugs were evaluated using enzyme kinetics as substrates of expressed and purified CESs from beagle dog, cynomolgus monkey, and human genes. For the substrates examined, human and monkey CES2 more efficiently catalyzed hydrolysis compared with CES1, whereas CES1 was the more efficient enzyme in dog. Quantitative real-time polymerase chain reaction and Western blot analyses indicate that the pattern of CES tissue expression in monkey is similar to that of human, but the CES expression in dog is unique, with no detectable expression of CES in the intestine. Loperamide, a selective human CES2 inhibitor, was also found to be a CES2-selective inhibitor in both dog and monkey. This is the first study to examine substrate specificity among dog, human, and monkey CESs.


Journal of Pharmaceutical Sciences | 2011

Effect of gastric pH on the pharmacokinetics of a bcs class II compound in dogs: Utilization of an artificial stomach and duodenum dissolution model and gastroplus,™ simulations to predict absorption

Shobha N. Bhattachar; Everett J. Perkins; Jeffrey S. Tan; Lee J. Burns

Dogs are one of the most commonly used non-rodent species in toxicology studies and are known to have basal stomach pH ranging from 2 to 7 in the fasted state. Thus absorption and resulting plasma exposure of weakly basic compounds administered as crystalline suspensions to dogs are often variable. LY2157299 is a potent and selective transforming growth factor (TGF)-beta receptor type 1 kinase (TGF-βRI) inhibitor that displayed variable absorption in early dog studies. This molecule is a weakly basic Biopharmaceutics Classification System (BCS)Class II compound, and depends on the rate and extent of dissolution to drive oral absorption. An artificial stomach and duodenum (ASD) dissolution model was utilized to evaluate potential effect of gastric pH on the absorption of suspension and buffered solution formulations. GastroPlus™ was also employed to predict the magnitude of gastric pH changes on LY2157299 absorption. The ASD experiments demonstrated that administration of a buffered acidic solution could improve the potential for absorption by normalizing gastric pH and enabling supersaturation in the duodenum. GastroPlus™ modeling suggested that direct modulation of gastric pH could lead to marked changes in bioavailability. Pharmacokinetic experiments were conducted in dogs to evaluate the effect of gastric pH modification on plasma exposure. The data were qualitatively consistent with the predictions.


Bioanalysis | 2011

Dried blood spot sampling: coupling bioanalytical feasibility, blood–plasma partitioning and transferability to in vivo preclinical studies

Enaksha R. Wickremsinhe; Basira G Abdul; Naijia H Huang; John W Richard; Jennifer L Hanes; Kenneth J. Ruterbories; Everett J. Perkins; Ajai K. Chaudhary

BACKGROUND The adoption of dried blood spot (DBS) sampling and analysis to support drug discovery and development requires the understanding of its bioanalytical feasibility as well as the distribution of the analyte in blood. RESULTS Demonstrated the feasibility of adopting DBS for four test analytes representing diverse physico-chemical as well as pharmacokinetic parameters. The key findings include the use of a single extraction procedure across all four analytes, assay range of 1 to 5000 ng/ml, stability in whole blood as well as on-card, and the non-impact of blood volume. In vivo data were used to calculate the blood-to-plasma ratio (using both AUC and average of individual time points), which was then used to predict plasma concentration from DBS data. The predicted data showed an excellent correlation with actual plasma data. CONCLUSION Transition from plasma to DBS can be supported for preclinical studies by conducting a few well-defined bioanalytical experiments followed by an in vivo bridging study. Blood:plasma ratio derived from the bridging study can be used to predict plasma concentrations from DBS data.


Journal of Pharmacological and Toxicological Methods | 2008

Effect of buffer components and carrier solvents on in vitro activity of recombinant human carboxylesterases

Eric T. Williams; Mariam E. Ehsani; Xiliang Wang; He Wang; Yue-Wei Qian; Steven A. Wrighton; Everett J. Perkins

INTRODUCTION The effects of buffer and substrate solvent conditions on in vitro activity of carboxylesterases (CE) have not been previously described. Therefore, it is unknown if the many different assay conditions used by various laboratories have a substantial impact on the activity of CE enzymes. METHODS Three human CEs were expressed and purified, and the hydrolysis of 4-nitrophenyl butyrate was measured to assess enzyme activity. Four buffers (HEPES, potassium phosphate, sodium phosphate, and Tris) were evaluated for their effects on enzyme activity at concentrations ranging from 5 to 900 mM, as well as phosphate buffered saline. Five commonly used substrate-carrier solvents (acetone, acetonitrile, dimethyl sulfoxide, ethanol, and methanol) ranging from 0.25 to 6% were also assessed for their effect on enzyme activity. RESULTS The clearances for the CEs in HEPES, potassium phosphate, sodium phosphate, and Tris up to 100 mM were similar to the CE clearances obtained with phosphate buffered saline. Higher buffer concentrations resulted in differential activity of the CEs. All three CEs tolerated the substrate solvents up to 2% as indicated by little effect of solvent on catalytic activity. At substrate solvent concentrations above 2% the CE activities were found to gradually decrease. In general, CES3 displayed substantially lower activity than CES1 and CES2. DISCUSSION In conclusion, any of the buffers examined up to 100 mM resulted in clearance values similar to that of phosphate buffered saline for the hydrolysis of 4-nitrophenyl butyrate by the human CEs. With regard to the substrate solvents tested, acetone, acetonitrile, or dimethyl sulfoxide appear to be well tolerated by the CEs up to 2% of the total reaction volume.


Molecular Phylogenetics and Evolution | 2010

Genomic analysis of the carboxylesterases: identification and classification of novel forms.

Eric T. Williams; He Wang; Steven A. Wrighton; Yue-Wei Qian; Everett J. Perkins

Large species differences in the expression of carboxylesterases (CE) have been described, but the interrelationships of CEs across species are not well characterized. In the current analyses, sequences with genomic structures similar to human CEs were found in piscine, avian, and mammalian genomes. Analyses of these genes suggest that four CE groups existed prior to mammalian divergence, with another form occurring after eutherian-marsupial divergence, yielding five distinct mammalian CE groups. The CE1 and CE2 groupings appear to have undergone extensive gene duplication in species with herbivorous and omnivorous diets underscoring the potential importance of these two groups in xenobiotic metabolism. However, CE3, CE4, and CE5 have remained at one gene per species in almost all observed cases. In avian and piscine genomes, only two CE groupings each were observed in the currently available sequence data. Finally, this study presents considerations for a broader phylogenetic-based nomenclature that could encompass other serine hydrolases in addition to the CEs.


Pharmaceutics | 2013

Preclinical absorption, distribution, metabolism, and excretion of an oral amide prodrug of gemcitabine designed to deliver prolonged systemic exposure.

Enaksha R. Wickremsinhe; Jingqi Bao; Richard Smith; Richard Burton; Shannon Dow; Everett J. Perkins

Gemcitabine is an intravenously administered nucleoside analog chemotherapeutic agent. The ability to deliver this agent as an oral drug would allow greater flexibility of administration and patient convenience; however, attempts have been fraught with high first-pass metabolism and potential intestinal toxicity. Alternatively, an amide prodrug of gemcitabine (LY2334737) was discovered, which is able to avoid the extensive first-pass metabolism that occurs following administration of gemcitabine. Preclinical in vitro and in vivo experiments were conducted to evaluate the hydrolysis and pharmacokinetics of LY2334737 and its downstream metabolites. In mice, rats, and dogs, the prodrug is absorbed largely intact across the intestinal epithelium and delivers LY2334737 to systemic circulation. The hydrolysis of LY2334737 is relatively slow, resulting in sustained release of gemcitabine in vivo. In vitro experiments identified carboxylesterase 2 (CES2) as a major enzyme involved in the hydrolysis of LY2334737, but with relatively low intrinsic clearance. Following hydrolysis of the prodrug, gemcitabine is cleared predominantly via the formation of its inactive metabolite dFdU. Both biliary and renal excretion was responsible for the elimination of LY2334737 and its metabolites in both mice and dogs.

Collaboration


Dive into the Everett J. Perkins's collaboration.

Top Co-Authors

Avatar

Daniel Schlenk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric T. Williams

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

He Wang

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge