Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Wrighton is active.

Publication


Featured researches published by Steven A. Wrighton.


Drug Metabolism Reviews | 2001

THE ROLE OF HEPATIC AND EXTRAHEPATIC UDP-GLUCURONOSYLTRANSFERASES IN HUMAN DRUG METABOLISM *,†

Michael B. Fisher; Mary F. Paine; Timothy J. Strelevitz; Steven A. Wrighton

At present, the methods and enzymology of the UDP-glucuronosyltransferases (UGTs) lag behind that of the cytochromes P450 (CYPs). About 15 human UGTs have been identified, and knowledge about their regulation, substrate selectivity, and tissue distribution has progressed recently. Alamethicin has been characterized as a treatment to remove the latency of microsomal glucuronidations. Most UGT isoforms appear to have a distinct hepatic and/or extrahepatic expression, resulting in significant expression in kidney, intestine, and steroid target tissues. The gastrointestinal tract possesses a complex expression pattern largely containing members of the UGT1A subfamily. Thus, these forms are poised to participate in the first pass metabolism of oral drugs. The authors and others have identified a significant expression of UGT1A1 in human small intestine, an enzyme possessing considerable allelic variability and a polymorphic expression pattern in intestine. Intestinal glucuronidation therefore plays a major role not only in first pass metabolism, but also in the degree of interindividual variation in overall oral bioavailability. Due to issues such as significant genetic variability and tissue localization in first-pass organs, clearance due to UGT1A1 should be minimized for new drugs.


The Journal of Clinical Pharmacology | 2010

Metabolism and Disposition of the Thienopyridine Antiplatelet Drugs Ticlopidine, Clopidogrel, and Prasugrel in Humans

Nagy A. Farid; Atsushi Kurihara; Steven A. Wrighton

Ticlopidine, clopidogrel, and prasugrel are thienopyridine prodrugs that inhibit adenosine‐5′‐diphosphate (ADP)‐mediated platelet aggregation in vivo. These compounds are converted to thiol‐containing active metabolites through a corresponding thiolactone. The 3 compounds differ in their metabolic pathways to their active metabolites in humans. Whereas ticlopidine and clopidogrel are metabolized to their thiolactones in the liver by cytochromes P450, prasugrel proceeds to its thiolactone following hydrolysis by carboxylesterase 2 during absorption, and a portion of prasugrels active metabolite is also formed by intestinal CYP3A. Both ticlopidine and clopidogrel are subject to major competing metabolic pathways to inactive metabolites. Thus, varying efficiencies in the formation of active metabolites affect observed effects on the onset of action and extent of inhibition of platelet aggregation (IPA). Knowledge of the CYP‐dependent formation of ticlopidine and clopidogrel thiolactones helps explain some of the observed drug‐drug interactions with these molecules and, more important, the role of CYP2C19 genetic polymorphism on the pharmacokinetics of and pharmacodynamic response to clopidogrel. The lack of drug interaction potential and the absence of CYP2C19 genetic effect result in a predictable response to thienopyridine antiplatelet therapy with prasugrel. Current literature shows that greater ADP‐mediated IPA is associated with significantly better clinical outcomes for patients with acute coronary syndrome.


The Journal of Clinical Pharmacology | 2003

The Conduct of In Vitro and In Vivo Drug‐Drug Interaction Studies: A PhRMA Perspective

Thorir D. Bjornsson; John T. Callaghan; Heidi J. Einolf; Volker Fischer; Lawrence Gan; Scott W. Grimm; John Kao; S. Peter King; Gerald T. Miwa; Lan Ni; Gondi Kumar; James F. McLeod; Scott R. Obach; Stanley Roberts; Amy L. Roe; Anita Shah; Fred Snikeris; John T. Sullivan; Donald J. Tweedie; Jose M. Vega; John S. Walsh; Steven A. Wrighton

Current regulatory guidances do not address specific study designs for in vitro and in vivo drug‐drug interaction studies. There is a common desire by regulatory authorities and by industry sponsors to harmonize approaches to allow for a better assessment of the significance of findings across different studies and drugs. There is also a growing consensus for the standardization of cytochrome P450 (CYP) probe substrates, inhibitors, and inducers and for the development of classification systems to improve the communication of risk to health care providers and patients. While existing guidances cover mainly CYP‐mediated drug interactions, the importance of other mechanisms, such as transporters, has been recognized more recently and should also be addressed. This paper was prepared by the Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism and Clinical Pharmacology Technical Working Groups and represents the current industry position. The intent is to define a minimal best practice for in vitro and in vivo pharmacokinetic drug‐drug interaction studies targeted to development (not discovery support) and to define a data package that can be expected by regulatory agencies in compound registration dossiers.


Pharmacogenetics | 2001

The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants

Jiong Zhang; Peter M. Kuehl; Eric D. Green; Jeffery W. Touchman; Paul B. Watkins; Ann K. Daly; Stephen D. Hall; Patrick Maurel; Mary V. Relling; Cynthia Brimer; Kazuto Yasuda; Steven A. Wrighton; Michael L. Hancock; Richard B. Kim; Stephen C. Strom; Kenneth Thummel; Christopher G. Russell; James R. Hudson; Erin G. Schuetz; Mark S. Boguski

The pregnane X receptor (PXR)/steroid and xenobiotic receptor (SXR) transcriptionally activates cytochrome P4503A4 (CYP3A4) when ligand activated by endobiotics and xenobiotics. We cloned the human PXR gene and analysed the sequence in DNAs of individuals whose CYP3A phenotype was known. The PXR gene spans 35 kb, contains nine exons, and mapped to chromosome 13q11-13. Thirty-eight single nucleotide polymorphisms (SNPs) were identified including six SNPs in the coding region. Three of the coding SNPs are non-synonymous creating new PXR alleles [PXR*2, P27S (79C to T); PXR*3, G36R (106G to A); and PXR*4, R122Q (4321G to A)]. The frequency of PXR*2 was 0.20 in African Americans and was never found in Caucasians. Hepatic expression of CYP3A4 protein was not significantly different between African Americans homozygous for PXR*1 compared to those with one PXR*2 allele. PXR*4 was a rare variant found in only one Caucasian person. Homology modelling suggested that R122Q, (PXR*4) is a direct DNA contact site variation in the third alpha-helix in the DNA binding domain. Compared with PXR*1, and variants PXR*2 and PXR*3, only the variant PXR*4 protein had significantly decreased affinity for the PXR binding sequence in electromobility shift assays and attenuated ligand activation of the CYP3A4 reporter plasmids in transient transfection assays. However, the person heterozygous for PXR*4 is normal for CYP3A4 metabolism phenotype. The relevance of each of the 38 PXR SNPs identified in DNA of individuals whose CYP3A basal and rifampin-inducible CYP3A4 expression was determined in vivo and/or in vitro was demonstrated by univariate statistical analysis. Because ligand activation of PXR and upregulation of a system of drug detoxification genes are major determinants of drug interactions, it will now be useful to extend this work to determine the association of these common PXR SNPs to human variation in induction of other drug detoxification gene targets.


Drug Metabolism and Disposition | 2006

Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450.

Jessica Rehmel; James A. Eckstein; Nagy A. Farid; John B. Heim; Steve C. Kasper; Atsushi Kurihara; Steven A. Wrighton; Barbara J. Ring

The biotransformation of prasugrel to R-138727 (2-[1-2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-mercapto-3-piperidinylidene]acetic acid) involves rapid deesterification to R-95913 (2-[2-oxo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl]-1-cyclopropyl-2-(2-fluorophenyl)ethanone) followed by cytochrome P450 (P450)-mediated formation of R-138727, the metabolite responsible for platelet aggregation. For identification of the P450s responsible for the formation of the active metabolite, the current studies were conducted with R-95913 as the substrate. Incubations required supplementation with reduced glutathione. Hyperbolic kinetics (Km 21–30 μM), consistent with a single enzyme predominating, were observed after incubations with human liver microsomes. Correlation analyses revealed a strong relationship between R-138727 formation and CYP3A-mediated midazolam 1′-hydroxylation (r2 = 0.98; p < 0.001) in a bank of characterized human liver microsomal samples. The human lymphoblast-expressed enzymes capable of forming R-138727, in rank order of rates, were CYP3A4>CYP2B6>CYP2C19≈CYP2C9>CYP2D6. A monoclonal antibody to CYP2B6 and the CYP3A inhibitor ketoconazole substantially inhibited R-138727 formation, whereas inhibitors of CYP2C9 (sulfaphenazole) and CYP2C19 (omeprazole) did not. Scaling of in vitro intrinsic clearance values from expressed enzymes to the whole liver using a relative abundance approach indicated that either CYP3A4 alone or CYP3A4 and CYP2B6 are the major contributors to R-138727 formation. R-95913 and R-138727 were also examined for their ability to inhibit metabolism mediated by five P450s. R-138727 did not inhibit the P450s tested. In vitro, R-95913 inhibited CYP2C9, CYP2C19, CYP2D6, and CYP3A, with Ki values ranging from 7.2 μM to 82 μM, but did not inhibit CYP1A2. These Ki values exceed circulating concentrations in humans by 3.8- to 43-fold. Therefore, neither R-95913 nor R-138727 is expected to substantially inhibit the P450-mediated metabolism of coadministered drugs.


Journal of Pharmacological and Toxicological Methods | 2000

Progress in predicting human ADME parameters in silico.

Sean Ekins; Chris L. Waller; Peter W. Swaan; Gabriele Cruciani; Steven A. Wrighton; James H. Wikel

Understanding the development of a scientific approach is a valuable exercise in gauging the potential directions the process could take in the future. The relatively short history of applying computational methods to absorption, distribution, metabolism and excretion (ADME) can be split into defined periods. The first began in the 1960s and continued through the 1970s with the work of Corwin Hansch et al. Their models utilized small sets of in vivo ADME data. The second era from the 1980s through 1990s witnessed the widespread incorporation of in vitro approaches as surrogates of in vivo ADME studies. These approaches fostered the initiation and increase in interpretable computational ADME models available in the literature. The third era is the present were there are many literature data sets derived from in vitro data for absorption, drug-drug interactions (DDI), drug transporters and efflux pumps [P-glycoprotein (P-gp), MRP], intrinsic clearance and brain penetration, which can theoretically be used to predict the situation in vivo in humans. Combinatorial synthesis, high throughput screening and computational approaches have emerged as a result of continual pressure on pharmaceutical companies to accelerate drug discovery while decreasing drug development costs. The goal has become to reduce the drop-out rate of drug candidates in the latter, most expensive stages of drug development. This is accomplished by increasing the failure rate of candidate compounds in the preclinical stages and increasing the speed of nomination of likely clinical candidates. The industry now understands the reasons for clinical failure other than efficacy are mainly related to pharmacokinetics and toxicity. The late 1990s saw significant company investment in ADME and drug safety departments to assess properties such as metabolic stability, cytochrome P-450 inhibition, absorption and genotoxicity earlier in the drug discovery paradigm. The next logical step in this process is the evaluation of higher throughput data to determine if computational (in silico) models can be constructed and validated from it. Such models would allow an exponential increase in the number of compounds screened virtually for ADME parameters. A number of researchers have started to utilize in silico, in vitro and in vivo approaches in parallel to address intestinal permeability and cytochrome P-450-mediated DDI. This review will assess how computational approaches for ADME parameters have evolved and how they are likely to progress.


Drug Metabolism Reviews | 2000

THE HUMAN CYP3A SUBFAMILY: PRACTICAL CONSIDERATIONS*

Steven A. Wrighton; Erin G. Schuetz; Kenneth E. Thummel; Danny D. Shen; Kenneth R. Korzekwa; Paul B. Watkins

STEVEN A. WRIGHTON,† ERIN G. SCHUETZ, KENNETH E. THUMMEL, DANNY D. SHEN, KENNETH R. KORZEKWA, and PAUL B. WATKINS Department of Drug Disposition Lilly Research Laboratories Lilly Corporate Center Mail Drop 0730 Indianapolis, Indiana 46285 Department of Pharmaceutical Sciences St. Jude Children’s Research Hospital Memphis, Tennessee 38105 Department of Pharmaceutics Box 357610 University of Washington Seattle, Washington 98195 Department of Pharmacy University of Washington Seattle, Washington 98195 Camitro Corporation 4040 Campbell Avenue Menlo Park, California 94025 University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599


Drug Metabolism Reviews | 1999

THE ROLE OF CYP2B6 IN HUMAN XENOBIOTIC METABOLISM

Sean Ekins; Steven A. Wrighton

The cytochromes P450 (CYP) comprise a large multigene family of heme-thiolate proteins which are of considerable importance in the metabolism of xenobiotics and endobiotics. Over 500 CYP genes have...


Journal of Pharmacokinetics and Biopharmaceutics | 1996

The human drug metabolizing cytochromes P450

Steven A. Wrighton; Mark Vandenbranden; Barbara J. Ring

The superfamily of heme-thiolate proteins known as the cytochromes P450 is responsible for the oxidative metabolism of the majority of drugs. Thus, the phenotypes of individuals with respect to their levels of catalytically active cytochromes P450 determines to a large part the substantial interindividual variation observed in the metabolic clearance of drugs. Over the past 10 years 15 different human cytochromes P450 involved in drug metabolism have been isolated and characterized to varying degrees. This brief review discusses the characterization of these cytochromes P450 and how this knowledge has been used by the pharmaceutical industry to aid in the development of new drugs.


Pharmacogenetics | 2000

Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity : relationship between UGT1A1 promoter genotype and variability in a liver bank

Michael B. Fisher; Mark Vandenbranden; Karen A. B. Findlay; Brian Burchell; Kenneth E. Thummel; Stephen D. Hall; Steven A. Wrighton

The variability in a liver bank and tissue distribution of three probe UDP-glucuronosyltransferase (UGT) activities were determined as a means to predict interindividual differences in expression and the contribution of extrahepatic metabolism to presystemic and systemic clearance. Formation rates of acetaminophen-O-glucuronide (APAPG), morphine-3-glucuronide (M3G), and oestradiol-3-glucuronide (E3G) as probes for UGT1A6, 2B7, and 1A1, respectively, were determined in human kidney, liver, and lung microsomes, and in microsomes from intestinal mucosa corresponding to duodenum, jejunum and ileum. While formation of E3G and APAPG were detectable in human kidney microsomes, M3G formation rates from kidney microsomes approached the levels seen in liver, indicating significant expression of UGT2B7. Interestingly, rates of E3G formation in human intestine exceeded the hepatic rates by several fold, while APAPG and M3G formation rates were low. The intestinal apparent Km value for E3G formation was essentially identical to that seen in liver, consistent with intestinal UGT1A1 expression. No UGT activities were observed in lung. Variability in APAPG and M3G activity across a bank of 20 human livers was modest (< or = 7-fold), compared to E3G formation, which varied approximately 30-fold. The E3G formation rates were found to segregate by UGT1A1 promoter genotype, with wild-type (TA)6 rates significantly greater than homozygous mutant (TA)7 individuals. Kinetic analyses were performed to demonstrate that the promoter mutation altered apparent Vmax without significantly affecting apparent Km. These results suggest that glucuronidation, and specifically UGT1A1 activity, can profoundly contribute to intestinal first pass metabolism and interindividual variability due to the expression of common allelic variants.

Collaboration


Dive into the Steven A. Wrighton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Vandenbranden

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheryl G. Wood

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Watkins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge