Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evgenia Glukhov is active.

Publication


Featured researches published by Evgenia Glukhov.


Journal of Natural Products | 2013

Molecular Networking as a Dereplication Strategy

Jane Y. Yang; Laura M. Sanchez; Christopher M. Rath; Xueting Liu; Paul D. Boudreau; Nicole Bruns; Evgenia Glukhov; Anne Wodtke; Rafael de Felício; Amanda M. Fenner; Weng Ruh Wong; Roger G. Linington; Lixin Zhang; Hosana M. Debonsi; William H. Gerwick; Pieter C. Dorrestein

A major goal in natural product discovery programs is to rapidly dereplicate known entities from complex biological extracts. We demonstrate here that molecular networking, an approach that organizes MS/MS data based on chemical similarity, is a powerful complement to traditional dereplication strategies. Successful dereplication with molecular networks requires MS/MS spectra of the natural product mixture along with MS/MS spectra of known standards, synthetic compounds, or well-characterized organisms, preferably organized into robust databases. This approach can accommodate different ionization platforms, enabling cross correlations of MS/MS data from ambient ionization, direct infusion, and LC-based methods. Molecular networking not only dereplicates known molecules from complex mixtures, it also captures related analogues, a challenge for many other dereplication strategies. To illustrate its utility as a dereplication tool, we apply mass spectrometry-based molecular networking to a diverse array of marine and terrestrial microbial samples, illustrating the dereplication of 58 molecules including analogues.


The Journal of Antibiotics | 2014

Quantitative molecular networking to profile marine cyanobacterial metabolomes.

Jacob R Winnikoff; Evgenia Glukhov; Jeramie D. Watrous; Pieter C. Dorrestein; William H. Gerwick

Untargeted liquid chromatography-MS (LC-MS) is used to rapidly profile crude natural product (NP) extracts; however, the quantity of data produced can become difficult to manage. Molecular networking based on MS/MS data visualizes these complex data sets to aid their initial interpretation. Here, we developed an additional visualization step for the molecular networking workflow to provide relative and absolute quantitation of a specific compound in an extract. The new visualization also facilitates combination of several metabolomes into one network, and so was applied to an MS/MS data set from 20 crude extracts of cultured marine cyanobacteria. The resultant network illustrates the high chemical diversity present among marine cyanobacteria. It is also a powerful tool for locating producers of specific metabolites. In order to dereplicate and identify culture-based sources of known compounds, we added MS/MS data from 60 pure NPs and NP analogs to the 20-strain network. This dereplicated six metabolites directly and offered structural information on up to 30 more. Most notably, our visualization technique allowed us to identify and quantitatively compare several producers of the bioactive and biosynthetically intriguing lipopeptide malyngamide C. Our most prolific producer, a Panamanian strain of Okeania hirsuta (PAB10FEB10-01), was found to produce at least 0.024 mg of malyngamide C per mg biomass (2.4%, w/dw) and is now undergoing genome sequencing to access the corresponding biosynthetic machinery.


Environmental Science & Technology | 2015

Combined LC-MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle.

Roberta Teta; Gerardo Della Sala; Evgenia Glukhov; Lena Gerwick; William H. Gerwick; Alfonso Mangoni; Valeria Costantino

Cyanotoxins obtained from a freshwater cyanobacterial collection at Green Lake, Seattle during a cyanobacterial harmful algal bloom in the summer of 2014 were studied using a new approach based on molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. This MS networking approach is particularly well-suited for the detection of new cyanotoxin variants and resulted in the discovery of three new cyclic peptides, namely microcystin-MhtyR (6), which comprised about half of the total microcystin content in the bloom, and ferintoic acids C (12) and D (13). Structure elucidation of 6 was aided by a new microscale methylation procedure. Metagenomic analysis of the bloom using the 16S-ITS rRNA region identified Microcystis aeruginosa as the predominant cyanobacterium in the sample. Fragments of the putative biosynthetic genes for the new cyanotoxins were also identified, and their sequences correlated to the structure of the isolated cyanotoxins.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea

Tiago Leao; Guilherme Castelão; Anton Korobeynikov; Emily A. Monroe; Sheila Podell; Evgenia Glukhov; Eric E. Allen; William H. Gerwick; Lena Gerwick

Significance The genus Moorea has yielded more than 40% of all reported marine cyanobacterial natural products. Preliminary genomic data suggest that many more natural products are yet to be discovered. However, incomplete genomic information has hampered the discovery of novel compounds using genome-mining approaches. Here, we report a complete genome of a filamentous marine tropical cyanobacterium, Moorea producens PAL, along with the improvement of other three Moorea draft genomes. Our analyses revealed a vast and distinctive natural product metabolic potential in these strains, highlighting that they are still an excellent source of unique metabolites despite previous extensive studies. Cyanobacteria are major sources of oxygen, nitrogen, and carbon in nature. In addition to the importance of their primary metabolism, some cyanobacteria are prolific producers of unique and bioactive secondary metabolites. Chemical investigations of the cyanobacterial genus Moorea have resulted in the isolation of over 190 compounds in the last two decades. However, preliminary genomic analysis has suggested that genome-guided approaches can enable the discovery of novel compounds from even well-studied Moorea strains, highlighting the importance of obtaining complete genomes. We report a complete genome of a filamentous tropical marine cyanobacterium, Moorea producens PAL, which reveals that about one-fifth of its genome is devoted to production of secondary metabolites, an impressive four times the cyanobacterial average. Moreover, possession of the complete PAL genome has allowed improvement to the assembly of three other Moorea draft genomes. Comparative genomics revealed that they are remarkably similar to one another, despite their differences in geography, morphology, and secondary metabolite profiles. Gene cluster networking highlights that this genus is distinctive among cyanobacteria, not only in the number of secondary metabolite pathways but also in the content of many pathways, which are potentially distinct from all other bacterial gene clusters to date. These findings portend that future genome-guided secondary metabolite discovery and isolation efforts should be highly productive.


Journal of Natural Products | 2017

Dudawalamides A–D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens

Jehad Almaliti; Karla L. Malloy; Evgenia Glukhov; Carmenza Spadafora; Marcelino Gutiérrez; William H. Gerwick

A family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, named dudawalamides A-D (1-4), was isolated from a Papua New Guinean field collection of the cyanobacterium Moorea producens using bioassay-guided and spectroscopic approaches. The planar structures of dudawalamides A-D were determined by a combination of 1D and 2D NMR experiments and MS analysis, whereas the absolute configurations were determined by X-ray crystallography, modified Marfeys analysis, chiral-phase GCMS, and chiral-phase HPLC. Dudawalamides A-D possess a broad spectrum of antiparasitic activity with minimal mammalian cell cytotoxicity. Comparative analysis of the Dhoya-containing class of lipopeptides reveals intriguing structure-activity relationship features of these NRPS-PKS-derived metabolites and their derivatives.


BMC Microbiology | 2016

A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB.

Susie L. Cummings; Debby Barbé; Tiago Leao; Anton Korobeynikov; Niclas Engene; Evgenia Glukhov; William H. Gerwick; Lena Gerwick

BackgroundFilamentous tropical marine cyanobacteria such as Moorea producens strain JHB possess a rich community of heterotrophic bacteria on their polysaccharide sheaths; however, these bacterial communities have not yet been adequately studied or characterized.Results and discussionThrough efforts to sequence the genome of this cyanobacterial strain, the 5.99 MB genome of an unknown bacterium emerged from the metagenomic information, named here as Mor1. Analysis of its genome revealed that the bacterium is heterotrophic and belongs to the phylum Acidobacteria, subgroup 22; however, it is only 85 % identical to the nearest cultured representative. Comparative genomics further revealed that Mor1 has a large number of genes involved in transcriptional regulation, is completely devoid of transposases, is not able to synthesize the full complement of proteogenic amino acids and appears to lack genes for nitrate uptake. Mor1 was found to be present in lab cultures of M. producens collected from various locations, but not other cyanobacterial species. Diverse efforts failed to culture the bacterium separately from filaments of M. producens JHB. Additionally, a co-culturing experiment between M. producens JHB possessing Mor1 and cultures of other genera of cyanobacteria indicated that the bacterium was not transferable.ConclusionThe data presented support a specific relationship between this novel uncultured bacterium and M. producens, however, verification of this proposed relationship cannot be done until the “uncultured” bacterium can be cultured.


eLife | 2017

Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae

Tal Luzzatto-Knaan; Neha Garg; Mingxun Wang; Evgenia Glukhov; Yao Peng; Gail Ackermann; Amnon Amir; Brendan M. Duggan; Sergey Ryazanov; Lena Gerwick; Rob Knight; Theodore Alexandrov; Nuno Bandeira; William H. Gerwick; Pieter C. Dorrestein

Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001


European Journal of Medicinal Chemistry | 2019

Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents

Jehad Almaliti; Bailey Miller; Halina Pietraszkiewicz; Evgenia Glukhov; C. Benjamin Naman; Toni Kline; Jeffrey C. Hanson; Xiaofan Li; Sihong Zhou; Frederick A. Valeriote; William H. Gerwick

Antibody-drug conjugates (ADCs) represent a new dimension of anticancer chemotherapeutics, with warheads to date generally involving either antitubulin or DNA-directed agents to achieve low-to sub-nanomolar potency. However, other potent cytotoxins working by different pharmacological mechanisms are under investigation, such as α,β-epoxyketone based proteasome inhibitors. These proteasome active agents are an emerging class of anticancer drug that possesses ultra-potent cytotoxicity to some cancer cell lines. The carmaphycins are representatives of this latter class that we isolated and characterized from a marine cyanobacterium, and these as well as several synthetic analogues exhibit this level of potency. In the current work, we investigated the use of these highly potent cytotoxic compounds as warheads in the design of novel ADCs. We designed and synthesized a library of carmaphycin B analogues that contain amine handles, enabling their attachment to an antibody linker. The basicity of these incorporated amine handles was shown to strongly affect their cytotoxic properties. Linear amines resulted in the greatest reduction in cytotoxicity whereas less basic aromatic amines retained potent activity as demonstrated by a 4-sulfonylaniline derivative. These investigations resulted in identifying the P2 residue in the carmaphycins as the most suitable site for linker attachment point, and hence, we synthesized a highly potent analogue of carmaphycin B that contained a 4-sulfonylaniline handle as an attachment point for the linker antibody.


Archive | 2018

Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria

Nathan A. Moss; Tiago Leao; Evgenia Glukhov; Lena Gerwick; William H. Gerwick

Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria.


Journal of Organic Chemistry | 2018

Samholides, Swinholide-Related Metabolites from a Marine Cyanobacterium cf. Phormidium sp.

Yiwen Tao; Pinglin Li; Daojing Zhang; Evgenia Glukhov; Lena Gerwick; Chen Zhang; Thomas F. Murray; William H. Gerwick

Cancer cell cytotoxicity was used to guide the isolation of nine new swinholide-related compounds, named samholides A-I (1-9), from an American Samoan marine cyanobacterium cf. Phormidium sp. Their structures were determined by extensive analysis of 1D and 2D NMR spectroscopic data. The new compounds share an unusual 20-demethyl 44-membered lactone ring composed of two monomers, and they demonstrate structural diversity arising from geometric isomerization of double bonds, sugar units with unique glyceryl moieties and varied methylation patterns. All of the new samholides were potently active against the H-460 human lung cancer cell line with IC50 values ranging from 170 to 910 nM. The isolation of these new swinholide-related compounds from a marine cyanobacterium reinvigorates questions concerning the evolution and biosynthetic origin of these natural products.

Collaboration


Dive into the Evgenia Glukhov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lena Gerwick

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiago Leao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmenza Spadafora

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jehad Almaliti

University of California

View shared research outputs
Top Co-Authors

Avatar

Nathan A. Moss

University of California

View shared research outputs
Top Co-Authors

Avatar

Anton Korobeynikov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge