Jehad Almaliti
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jehad Almaliti.
Journal of Natural Products | 2015
Karin Kleigrewe; Jehad Almaliti; Isaac Yuheng Tian; Robin B. Kinnel; Anton Korobeynikov; Emily A. Monroe; Brendan M. Duggan; Vincenzo Di Marzo; David H. Sherman; Pieter C. Dorrestein; Lena Gerwick; William H. Gerwick
An innovative approach was developed for the discovery of new natural products by combining mass spectrometric metabolic profiling with genomic analysis and resulted in the discovery of the columbamides, a new class of di- and trichlorinated acyl amides with cannabinomimetic activity. Three species of cultured marine cyanobacteria, Moorea producens 3L, Moorea producens JHB, and Moorea bouillonii PNG, were subjected to genome sequencing and analysis for their recognizable biosynthetic pathways, and this information was then compared with their respective metabolomes as detected by MS profiling. By genome analysis, a presumed regulatory domain was identified upstream of several previously described biosynthetic gene clusters in two of these cyanobacteria, M. producens 3L and M. producens JHB. A similar regulatory domain was identified in the M. bouillonii PNG genome, and a corresponding downstream biosynthetic gene cluster was located and carefully analyzed. Subsequently, MS-based molecular networking identified a series of candidate products, and these were isolated and their structures rigorously established. On the basis of their distinctive acyl amide structure, the most prevalent metabolite was evaluated for cannabinomimetic properties and found to be moderate affinity ligands for CB1.
Chemistry & Biology | 2016
Anja Paatero; Juho Kellosalo; Bryan M. Dunyak; Jehad Almaliti; Jason E. Gestwicki; William H. Gerwick; Jack Taunton; Ville O. Paavilainen
Apratoxin A is a cytotoxic natural product that prevents the biogenesis of secretory and membrane proteins. Biochemically, apratoxin A inhibits cotranslational translocation into the ER, but its cellular target and mechanism of action have remained controversial. Here, we demonstrate that apratoxin A prevents protein translocation by directly targeting Sec61α, the central subunit of the protein translocation channel. Mutagenesis and competitive photo-crosslinking studies indicate that apratoxin A binds to the Sec61 lateral gate in a manner that differs from cotransin, a substrate-selective Sec61 inhibitor. In contrast to cotransin, apratoxin A does not exhibit a substrate-selective inhibitory mechanism, but blocks ER translocation of all tested Sec61 clients with similar potency. Our results suggest that multiple structurally unrelated natural products have evolved to target overlapping but non-identical binding sites on Sec61, thereby producing distinct biological outcomes.
Journal of Natural Products | 2017
Jehad Almaliti; Karla L. Malloy; Evgenia Glukhov; Carmenza Spadafora; Marcelino Gutiérrez; William H. Gerwick
A family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, named dudawalamides A-D (1-4), was isolated from a Papua New Guinean field collection of the cyanobacterium Moorea producens using bioassay-guided and spectroscopic approaches. The planar structures of dudawalamides A-D were determined by a combination of 1D and 2D NMR experiments and MS analysis, whereas the absolute configurations were determined by X-ray crystallography, modified Marfeys analysis, chiral-phase GCMS, and chiral-phase HPLC. Dudawalamides A-D possess a broad spectrum of antiparasitic activity with minimal mammalian cell cytotoxicity. Comparative analysis of the Dhoya-containing class of lipopeptides reveals intriguing structure-activity relationship features of these NRPS-PKS-derived metabolites and their derivatives.
Journal of Medicinal Chemistry | 2017
Gregory LaMonte; Jehad Almaliti; Betsaida Bibo-Verdugo; Lena Keller; Bing Yu Zou; Jennifer Yang; Yevgeniya Antonova-Koch; Pamela Orjuela-Sanchez; Colleen A. Boyle; Edgar Vigil; Lawrence Wang; Gregory M. Goldgof; Lena Gerwick; Anthony J. O’Donoghue; Elizabeth A. Winzeler; William H. Gerwick; Sabine Ottilie
Naturally derived chemical compounds are the foundation of much of our pharmacopeia, especially in antiproliferative and anti-infective drug classes. Here, we report that a naturally derived molecule called carmaphycin B is a potent inhibitor against both the asexual and sexual blood stages of malaria infection. Using a combination of in silico molecular docking and in vitro directed evolution in a well-characterized drug-sensitive yeast model, we determined that these compounds target the β5 subunit of the proteasome. These studies were validated using in vitro inhibition assays with proteasomes isolated from Plasmodium falciparum. As carmaphycin B is toxic to mammalian cells, we synthesized a series of chemical analogs that reduce host cell toxicity while maintaining blood-stage and gametocytocidal antimalarial activity and proteasome inhibition. This study describes a promising new class of antimalarial compound based on the carmaphycin B scaffold, as well as several chemical structural features that serve to enhance antimalarial specificity.
Bioorganic & Medicinal Chemistry Letters | 2013
Jehad Almaliti; Shadia E. Nada; Bryaune Carter; Zahoor A. Shah; L. M. Viranga Tillekeratne
Stroke is a debilitating disease and the third leading cause of death in the USA, where over 2000 new stroke cases are diagnosed every day. Treatment options for stroke-related brain damage are very limited and there is an urgent need for effective neuroprotective agents to treat these conditions. Comparison of the structures of several classes of neuroprotective natural products such as limonoids and cardiac glycosides revealed the presence of a common structural motif which may account for their observed neuroprotective activity. Several natural product mimics that incorporate this shared structural motif were synthesized and were found to possess significant neuroprotective activity. These compounds enhanced cell viability against H(2)O(2) induced oxidative stress or cell death in PC12 neuronal cells. The compounds were also found to enhance and modulate Na(+)/K(+)-ATPase activity of PC12 cells, which may suggest that the observed neuroprotective activity is mediated, at least partly, through interaction with Na(+)/K(+)-ATPase.
European Journal of Medicinal Chemistry | 2019
Jehad Almaliti; Bailey Miller; Halina Pietraszkiewicz; Evgenia Glukhov; C. Benjamin Naman; Toni Kline; Jeffrey C. Hanson; Xiaofan Li; Sihong Zhou; Frederick A. Valeriote; William H. Gerwick
Antibody-drug conjugates (ADCs) represent a new dimension of anticancer chemotherapeutics, with warheads to date generally involving either antitubulin or DNA-directed agents to achieve low-to sub-nanomolar potency. However, other potent cytotoxins working by different pharmacological mechanisms are under investigation, such as α,β-epoxyketone based proteasome inhibitors. These proteasome active agents are an emerging class of anticancer drug that possesses ultra-potent cytotoxicity to some cancer cell lines. The carmaphycins are representatives of this latter class that we isolated and characterized from a marine cyanobacterium, and these as well as several synthetic analogues exhibit this level of potency. In the current work, we investigated the use of these highly potent cytotoxic compounds as warheads in the design of novel ADCs. We designed and synthesized a library of carmaphycin B analogues that contain amine handles, enabling their attachment to an antibody linker. The basicity of these incorporated amine handles was shown to strongly affect their cytotoxic properties. Linear amines resulted in the greatest reduction in cytotoxicity whereas less basic aromatic amines retained potent activity as demonstrated by a 4-sulfonylaniline derivative. These investigations resulted in identifying the P2 residue in the carmaphycins as the most suitable site for linker attachment point, and hence, we synthesized a highly potent analogue of carmaphycin B that contained a 4-sulfonylaniline handle as an attachment point for the linker antibody.
Journal of Natural Products | 2017
C. Benjamin Naman; Jehad Almaliti; Lorene Armstrong; Eduardo J. E. Caro-Diaz; Marsha L. Pierce; Evgenia Glukhov; Amanda M. Fenner; Carmenza Spadafora; Hosana M. Debonsi; Pieter C. Dorrestein; Thomas F. Murray; William H. Gerwick
A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent target-directed isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gem-dichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a three-step synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM).
Journal of Medicinal Chemistry | 2016
Jehad Almaliti; Ayad A. Al-Hamashi; Ahmed T. Negmeldin; Christin L. Hanigan; Lalith Perera; Robert A. Casero; L. M. Viranga Tillekeratne
Archive | 2013
Jehad Almaliti
Planta Medica | 2015
Karin Kleigrewe; Jehad Almaliti; I Yuheng Tian; Robin B. Kinnel; Anton Korobeynikov; Emily A. Monroe; Brendan M. Duggan; V. Di Marzo; David H. Sherman; Pieter C. Dorrestein; Lena Gerwick; William H. Gerwick