Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evgenia Karousou is active.

Publication


Featured researches published by Evgenia Karousou.


FEBS Journal | 2012

Glycosaminoglycans: key players in cancer cell biology and treatment

Nikos Afratis; Chrisostomi Gialeli; Dragana Nikitovic; T. Tsegenidis; Evgenia Karousou; Achilleas D. Theocharis; Mauro S. G. Pavão; Nikos K. Karamanos

Glycosaminoglycans are natural heteropolysaccharides that are present in every mammalian tissue. They are composed of repeating disaccharide units that consist of either sulfated or non‐sulfated monosaccharides. Their molecular size and the sulfation type vary depending on the tissue, and their state either as part of proteoglycan or as free chains. In this regard, glycosami‐noglycans play important roles in physiological and pathological conditions. During recent years, cell biology studies have revealed that glycosaminoglycans are among the key macromolecules that affect cell properties and functions, acting directly on cell receptors or via interactions with growth factors. The accumulated knowledge regarding the altered structure of glycosaminoglycans in several diseases indicates their importance as biomarkers for disease diagnosis and progression, as well as pharmacological targets. This review summarizes how the fine structural characteristics of glycosaminoglycans, and enzymes involved in their biosynthesis and degradation, are involved in cell signaling, cell function and cancer progression. Prospects for glycosaminoglycan‐based therapeutic targeting in cancer are also discussed.


FEBS Journal | 2011

Transcriptional and post-translational regulation of hyaluronan synthesis

Raija Tammi; Alberto Passi; Kirsi Rilla; Evgenia Karousou; Davide Vigetti; Katri M. Makkonen; Markku Tammi

Hyaluronan, a ubiquitous high‐molecular‐mass glycinoglycan on cell surfaces and in extracellular matrices, has a number of specific signaling functions in cell–cell communication. Changes in its content, molecular mass and turnover rate are crucial for cell proliferation, migration and apoptosis, processes that control tissue remodeling during embryonic development, inflammation, injury and cancer. To maintain tissue homeostasis, the synthesis of hyaluronan must therefore be tightly controlled. In this review, we highlight some recent data on the transcriptional regulation of hyaluronan synthase (Has1–3) expression and on the post‐transcriptional control of hyaluronan synthase activity, which, in close association with the supply of the UDP‐sugar substrates of hyaluronan synthase, adjust the rate of hyaluronan synthesis.


Clinical Orthopaedics and Related Research | 2008

Collagens, Proteoglycans, MMP-2, MMP-9 and TIMPs in Human Achilles Tendon Rupture

Evgenia Karousou; Mario Ronga; Davide Vigetti; Alberto Passi; Nicola Maffulli

Tendon integrity depends on the extracellular matrix (ECM) metabolism which is regulated by proteolytic enzymes. However, it is unclear which enzymes play a role in tendon rupture. We studied the ECM of 19 ruptured human Achilles tendons, comparing the composition of specimens harvested close to the rupture with specimens harvested from an apparently healthy area in the same tendon. We compared gene expression of collagen Type I, decorin, and versican including enzymes involved in their metabolism as matrix metalloproteases (MMP-2 and -9) and tissue inhibitory of metalloproteinase (TIMP-1 and -2) using real-time PCR, zymography and FACE analysis. We found greater gene expression of proteoglycan core protein decorin and versican, collagen Type I, MMPs and TIMPs in the tendon rupture. Zymography analysis, reflecting expression of enzymatic activity, confirmed the gene expression data at protein level. Carbohydrate content was greater in the macroscopically healthy area than in the ruptured area. In the ruptured area, we found increased core protein synthesis but without the normal glycosaminoglycan production. The tissue in the area of rupture undergoes marked rearrangement at molecular levels and supports the role of MMPs in the pathology.


Journal of Biological Chemistry | 2010

Proinflammatory Cytokines Induce Hyaluronan Synthesis and Monocyte Adhesion in Human Endothelial Cells through Hyaluronan Synthase 2 (HAS2) and the Nuclear Factor-κB (NF-κB) Pathway

Davide Vigetti; Anna Genasetti; Evgenia Karousou; Manuela Viola; Paola Moretto; Moira Clerici; Sara Deleonibus; Giancarlo De Luca; Vincent C. Hascall; Alberto Passi

Chronic inflammation is now accepted to have a critical role in the onset of several diseases as well as in vascular pathology, where macrophage transformation into foam cells contributes in atherosclerotic plaque formation. Endothelial cells (EC) have a critical function in recruitment of immune cells, and proinflammatory cytokines drive the specific expression of several adhesion proteins. During inflammatory responses several cells produce hyaluronan matrices that promote monocyte/macrophage adhesion through interactions with the hyaluronan receptor CD44 present on inflammatory cell surfaces. In this study, we used human umbilical chord vein endothelial cells (HUVECs) as a model to study the mechanism that regulates hyaluronan synthesis after treatment with proinflammatory cytokines. We found that interleukin 1β and tumor necrosis factors α and β, but not transforming growth factors α and β, strongly induced HA synthesis by NF-κB pathway. This signaling pathway mediated hyaluronan synthase 2 (HAS2) mRNA expression without altering other glycosaminoglycan metabolism. Moreover, we verified that U937 monocyte adhesion on stimulated HUVECs depends strongly on hyaluronan, and transfection with short interference RNA of HAS2 abrogates hyaluronan synthesis revealing the critical role of HAS2 in this process.


Journal of Biological Chemistry | 2011

Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells.

Davide Vigetti; Moira Clerici; Sara Deleonibus; Evgenia Karousou; Manuela Viola; Paola Moretto; Paraskevi Heldin; Vincent C. Hascall; Giancarlo De Luca; Alberto Passi

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) involved in cell motility, proliferation, tissue remodeling, development, differentiation, inflammation, tumor progression, and invasion and controls vessel thickening in cardiovascular diseases. Therefore, the control of HA synthesis could permit the fine-tuning of cell behavior, but the mechanisms that regulate HA synthesis are largely unknown. Recent studies suggest that the availability of the nucleotide-sugar precursors has a critical role. Because the formation of UDP-sugars is a highly energetically demanding process, we have analyzed whether the energy status of the cell could control GAG production. AMP-activated protein kinase (AMPK) is the main ATP/AMP sensor of mammalian cells, and we mimicked an energy stress by treating human aortic smooth muscle cells (AoSMCs) with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside and metformin. Under these conditions, HA synthesis, but not that of the other GAGs, was greatly reduced. We confirmed the inhibitory effect of AMPK using a specific inhibitor and knock-out cell lines. We found that AMPK phosphorylated Thr-110 of human HAS2, which inhibits its enzymatic activity. In contrast, the other two HAS isoenzymes (HAS1 and HAS3) were not modified by the kinase. The reduction of HA decreased the ability of AoSMCs to proliferate, migrate, and recruit immune cells, thereby reducing the pro-atherosclerotic AoSMC phenotype. Interestingly, such effects were not recovered by treatment with exogenous HA, suggesting that AMPK can block the pro-atherosclerotic signals driven by HA by interaction with its receptors.


Matrix Biology | 2014

Metabolic control of hyaluronan synthases

Davide Vigetti; Manuela Viola; Evgenia Karousou; Giancarlo De Luca; Alberto Passi

Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.


Journal of Biological Chemistry | 2009

Modulation of hyaluronan synthase activity in cellular membrane fractions

Davide Vigetti; Anna Genasetti; Evgenia Karousou; Manuela Viola; Moira Clerici; Barbara Bartolini; Paola Moretto; Giancarlo De Luca; Vincent C. Hascall; Alberto Passi

Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1β, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.


The FASEB Journal | 2006

Matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases regulate human aortic smooth muscle cell migration during in vitro aging

Davide Vigetti; Paola Moretto; Manuela Viola; Anna Genasetti; Manuela Rizzi; Evgenia Karousou; Francesco Pallotti; Giancarlo De Luca; Alberto Passi

As a direct correlation between aging and the risk of onset of vascular disease has been universally accepted, we prepared an in vitro aging model consisting in sequential passages of human aortic smooth muscle cells (AoSMC) in order to evaluate the cell behavior changes during aging. Because matrix metalloproteinases (MMP) are actively involved in matrix remodeling and disease outcome, in our model we found active MMP‐2 only in the conditioned medium of young AoSMCs, whereas aged cells showed only the inactive zymogen form of MMP‐2 (pro‐MMP‐2). We ascribed the pro‐MMP‐2 activation in young cells to an increase in membrane type 1 matrix metalloproteinase (MT1‐MMP) content. Furthermore, we found that transcripts coding for tissue inhibitor of metalloproteinases (TIMPs) were up‐regulated in aged cells, and this increase of TIMPs could also prevent pro‐MMP‐2 activation in aged cells. Moreover, we demonstrated that young AoSMCs possess higher migratory capabilities than aged cells. The young AoSMC migration can be inhibited by adding TIMP‐1 and TIMP‐2 to the cells reproducing aged AoSMC migratory behavior. Finally, the role of MMP‐2 and TIMP‐2 in AoSMC migration was confirmed silencing MMP‐2 and TIMP‐2 in young and aged AoSMCs, respectively; therefore, in this study we showed that these enzymes play a pivotal role in the regulation of the AoSMC migration during in vitro aging.—Vigetti, D., Moretto, P., Viola, M., Genasetti, A., Rizzi, M., Karousou, E., Pallotti, F., De Luca, G., Passi, A. Matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases regulate human aortic smooth muscle cell migration during in vitro aging. FASEB J. 20, 1118–1130 (2006)


Current Medicinal Chemistry | 2012

Glycosaminoglycans as key molecules in atherosclerosis: the role of versican and hyaluronan.

Dimos Karangelis; I. Kanakis; Athanasia P. Asimakopoulou; Evgenia Karousou; Alberto Passi; Achilleas D. Theocharis; F. Triposkiadis; Nikolaos Tsilimingas; Nikos K. Karamanos

Cardiovascular disease is the largest cause of death in Western societies and it primarily results from atherosclerosis of large and medium-sized vessels. Atherosclerosis leads to myocardial infarction, when it occurs in the coronary arteries, or stroke, when it occurs in the cerebral arteries. Pathological processes involved in macrovascular disease include the accumulation of lipids which are retained by extracellular matrix (ECM) molecules, especially by the chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans (CS/DSPGs), such as versican, biglycan and decorin. The sulfation pattern of CS is a key player in protein interactions causing atherosclerosis. Several studies have shown that lipoproteins bind CSPGs via their glycosaminoglycan chains. Galactosaminoglycans, such as CS and DS, bind low density lipoproteins (LDL), affecting the role of these molecules in the arterial wall. In this article, the role of CS and versican in atherosclerosis and hyaluronan in atherogenesis as well as the up to date known mechanisms that provoke this pathological condition are presented and discussed.


Matrix Biology | 2017

Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer

Evgenia Karousou; Suniti Misra; Shibnath Ghatak; Katalin Dobra; Martin Götte; Davide Vigetti; Alberto Passi; Nikos K. Karamanos; Spyros S. Skandalis

Synthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size. Overexpression of variant isoforms of CD44 (CD44v) is most commonly linked to cancer progression, whereas their loss is associated with inhibition of tumor growth. In this review, we highlight that the regulation of HA synthases (HASes) by post-translational modifications, such as O-GlcNAcylation and ubiquitination, environmental factors and the action of microRNAs is important for HA synthesis and secretion in the tumor microenvironment. Moreover, we focus on the roles and interactions of CD44 with various proteins that reside extra- and intracellularly, as well as on cellular membranes with particular reference to the CD44-HA axis in cancer stem cell functions, and the importance of CD44/CD44v6 targeting to inhibit tumorigenesis.

Collaboration


Dive into the Evgenia Karousou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge