Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Moretto is active.

Publication


Featured researches published by Paola Moretto.


Journal of Biological Chemistry | 2008

Hyaluronan-CD44-ERK1/2 Regulate Human Aortic Smooth Muscle Cell Motility during Aging

Davide Vigetti; Manuela Viola; Eugenia Karousou; Manuela Rizzi; Paola Moretto; Anna Genasetti; Moira Clerici; Vincent C. Hascall; Giancarlo De Luca; Alberto Passi

The glycosaminoglycan hyaluronan (HA) modulates cell proliferation and migration, and it is involved in several human vascular pathologies including atherosclerosis and vascular restenosis. During intima layer thickening, HA increases dramatically in the neointima extracellular matrix. Aging is one of the major risk factors for the insurgence of vascular diseases, in which smooth muscle cells (SMCs) play a role by determining neointima formation through their migration and proliferation. Therefore, we established an in vitro aging model consisting of sequential passages of human aortic smooth muscle cells (AoSMCs). Comparing young and aged cells, we found that, during the aging process in vitro,HA synthesis significantly increases, as do HA synthetic enzymes (i.e. HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose dehydrogenase), and the HA receptor CD44. In aged cells, we also observed increased CD44 signaling that consisted of higher levels of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs migrated faster than young cells, and such migration could be modulated by HA, which alters the ERK1/2 phosphorylation. HA oligosaccharides of 6.8 kDa and an anti-CD44 blocking antibody prevented ERK1/2 phosphorylation and inhibited AoSMCs migration. These results indicate that, during aging, HA can modulate cell migration involving CD44-mediated signaling through ERK1/2. These data suggest that age-related HA accumulation could promote SMC migration and intima thickening during vascular neointima formation.


Journal of Biological Chemistry | 2010

Proinflammatory Cytokines Induce Hyaluronan Synthesis and Monocyte Adhesion in Human Endothelial Cells through Hyaluronan Synthase 2 (HAS2) and the Nuclear Factor-κB (NF-κB) Pathway

Davide Vigetti; Anna Genasetti; Evgenia Karousou; Manuela Viola; Paola Moretto; Moira Clerici; Sara Deleonibus; Giancarlo De Luca; Vincent C. Hascall; Alberto Passi

Chronic inflammation is now accepted to have a critical role in the onset of several diseases as well as in vascular pathology, where macrophage transformation into foam cells contributes in atherosclerotic plaque formation. Endothelial cells (EC) have a critical function in recruitment of immune cells, and proinflammatory cytokines drive the specific expression of several adhesion proteins. During inflammatory responses several cells produce hyaluronan matrices that promote monocyte/macrophage adhesion through interactions with the hyaluronan receptor CD44 present on inflammatory cell surfaces. In this study, we used human umbilical chord vein endothelial cells (HUVECs) as a model to study the mechanism that regulates hyaluronan synthesis after treatment with proinflammatory cytokines. We found that interleukin 1β and tumor necrosis factors α and β, but not transforming growth factors α and β, strongly induced HA synthesis by NF-κB pathway. This signaling pathway mediated hyaluronan synthase 2 (HAS2) mRNA expression without altering other glycosaminoglycan metabolism. Moreover, we verified that U937 monocyte adhesion on stimulated HUVECs depends strongly on hyaluronan, and transfection with short interference RNA of HAS2 abrogates hyaluronan synthesis revealing the critical role of HAS2 in this process.


Journal of Biological Chemistry | 2012

Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis

Davide Vigetti; Sara Deleonibus; Paola Moretto; Eugenia Karousou; Manuela Viola; Barbara Bartolini; Vincent C. Hascall; Markku Tammi; Giancarlo De Luca; Alberto Passi

Background: UDP-GlcNAc is a precursor of glycoconjugates, including hyaluronan, and induces protein glycosylation to form O-linked GlcNAc (O-GlcNAcylation). Results: UDP-GlcNAc induces hyaluronan synthesis through O-GlcNAcylation of hyaluronan synthase 2, which stabilizes the enzyme and prevents its proteasomal degradation. Conclusion: O-GlcNAcylation of hyaluronan synthase 2 can control synthesis of extracellular matrices with hyaluronan. Significance: UDP-GlcNAc could control cell microenvironments that are altered in many pathologies, including vascular diseases and cancer. Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.


Journal of Biological Chemistry | 2011

Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells.

Davide Vigetti; Moira Clerici; Sara Deleonibus; Evgenia Karousou; Manuela Viola; Paola Moretto; Paraskevi Heldin; Vincent C. Hascall; Giancarlo De Luca; Alberto Passi

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) involved in cell motility, proliferation, tissue remodeling, development, differentiation, inflammation, tumor progression, and invasion and controls vessel thickening in cardiovascular diseases. Therefore, the control of HA synthesis could permit the fine-tuning of cell behavior, but the mechanisms that regulate HA synthesis are largely unknown. Recent studies suggest that the availability of the nucleotide-sugar precursors has a critical role. Because the formation of UDP-sugars is a highly energetically demanding process, we have analyzed whether the energy status of the cell could control GAG production. AMP-activated protein kinase (AMPK) is the main ATP/AMP sensor of mammalian cells, and we mimicked an energy stress by treating human aortic smooth muscle cells (AoSMCs) with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside and metformin. Under these conditions, HA synthesis, but not that of the other GAGs, was greatly reduced. We confirmed the inhibitory effect of AMPK using a specific inhibitor and knock-out cell lines. We found that AMPK phosphorylated Thr-110 of human HAS2, which inhibits its enzymatic activity. In contrast, the other two HAS isoenzymes (HAS1 and HAS3) were not modified by the kinase. The reduction of HA decreased the ability of AoSMCs to proliferate, migrate, and recruit immune cells, thereby reducing the pro-atherosclerotic AoSMC phenotype. Interestingly, such effects were not recovered by treatment with exogenous HA, suggesting that AMPK can block the pro-atherosclerotic signals driven by HA by interaction with its receptors.


Connective Tissue Research | 2008

Hyaluronan and Human Endothelial Cell Behavior

Anna Genasetti; Davide Vigetti; Manuela Viola; Eugenia Karousou; Paola Moretto; Manuela Rizzi; Barbara Bartolini; Moira Clerici; Francesco Pallotti; Giancarlo De Luca; Alberto Passi

Hyaluronan (HA) is the only nonsulphated glycosaminoglycan of extracellular matrix. In mammals HA is synthesised by three homologues HA synthases: HAS1, HAS2, and HAS3. The HA is daily catabolized by the hyaluronidase enzymes to either oligosaccharides or larger polymer. Despite its simple structure, HA is involved in a great number of biological functions, such as cell proliferation and migration, morphogenesis, wound healing, inflammation, angiogenesis, and tumor growth. Moreover, an important biological role is related to HA oligosaccharides that stimulate cytokine secretion and endothelial cell proliferation. Nevertheless no data about HA presence in endothelium are reported in literature. Several studies underline HA involvement in endothelial cell proliferation, migration, new vessels formation, and leucocytes recruitment. We review the role of HA in endothelial cell in normal condition and during vascular injury.


Journal of Biological Chemistry | 2009

Modulation of hyaluronan synthase activity in cellular membrane fractions

Davide Vigetti; Anna Genasetti; Evgenia Karousou; Manuela Viola; Moira Clerici; Barbara Bartolini; Paola Moretto; Giancarlo De Luca; Vincent C. Hascall; Alberto Passi

Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1β, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.


Journal of Biological Chemistry | 2014

Natural Antisense Transcript for Hyaluronan Synthase 2 (HAS2-AS1) Induces Transcription of HAS2 via Protein O-GlcNAcylation

Davide Vigetti; Sara Deleonibus; Paola Moretto; Timothy Bowen; Jens W. Fischer; Maria Grandoch; Alexander Oberhuber; Dona C. Love; John A. Hanover; Raffaella Cinquetti; Eugenia Karousou; Manuela Viola; Maria Luisa D'Angelo; Vincent C. Hascall; Giancarlo De Luca; Alberto Passi

Background: Intracellular proteins glycosylation with O-GlcNAc is able to influence cell microenvironment. Results: O-GlcNAcylation increases hyaluronan synthase 2 (HAS2) transcription via its natural antisense transcript HAS2-AS1. Conclusion: A novel mechanism to regulate hyaluronan synthesis via long non-coding RNA is described. Significance: This finding highlights a new target to regulate HA synthesis, critical in many pathophysiological processes. Changes in the microenvironment organization within vascular walls are critical events in the pathogenesis of vascular pathologies, including atherosclerosis and restenosis. Hyaluronan (HA) accumulation into artery walls supports vessel thickening and is involved in many cardiocirculatory diseases. Excessive cytosolic glucose can enter the hexosamine biosynthetic pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and lead to modification of cytosolic proteins via O-linked attachment of the monosaccharide β-N-GlcNAc (O-GlcNAcylation) from UDP-GlcNAc by the enzyme O-GlcNAc transferase. As many cytoplasmic and nuclear proteins can be glycosylated by O-GlcNAc, we studied whether the expression of the HA synthases that synthesize HA could be controlled by O-GlcNAcylation in human aortic smooth muscle cells. Among the three HAS isoenzymes, only HAS2 mRNA increased after O-GlcNAcylation induced by glucosamine treatments or by inhibiting O-GlcNAc transferase with PUGNAC (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate). We found that the natural antisense transcript of HAS2 (HAS2-AS1) was absolutely necessary to induce the transcription of the HAS2 gene. Moreover, we found that O-GlcNAcylation modulated HAS2-AS1 promoter activation by recruiting the NF-κB subunit p65, but not the HAS2 promoter, whereas HAS2-AS1 natural antisense transcript, working in cis, regulated HAS2 transcription by altering the chromatin structure around the HAS2 proximal promoter via O-GlcNAcylation and acetylation. These results indicate that HAS2 transcription can be finely regulated not only by recruiting transcription factors to the promoter as previously described but also by modulating chromatin accessibility by epigenetic modifications.


The FASEB Journal | 2006

Matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases regulate human aortic smooth muscle cell migration during in vitro aging

Davide Vigetti; Paola Moretto; Manuela Viola; Anna Genasetti; Manuela Rizzi; Evgenia Karousou; Francesco Pallotti; Giancarlo De Luca; Alberto Passi

As a direct correlation between aging and the risk of onset of vascular disease has been universally accepted, we prepared an in vitro aging model consisting in sequential passages of human aortic smooth muscle cells (AoSMC) in order to evaluate the cell behavior changes during aging. Because matrix metalloproteinases (MMP) are actively involved in matrix remodeling and disease outcome, in our model we found active MMP‐2 only in the conditioned medium of young AoSMCs, whereas aged cells showed only the inactive zymogen form of MMP‐2 (pro‐MMP‐2). We ascribed the pro‐MMP‐2 activation in young cells to an increase in membrane type 1 matrix metalloproteinase (MT1‐MMP) content. Furthermore, we found that transcripts coding for tissue inhibitor of metalloproteinases (TIMPs) were up‐regulated in aged cells, and this increase of TIMPs could also prevent pro‐MMP‐2 activation in aged cells. Moreover, we demonstrated that young AoSMCs possess higher migratory capabilities than aged cells. The young AoSMC migration can be inhibited by adding TIMP‐1 and TIMP‐2 to the cells reproducing aged AoSMC migratory behavior. Finally, the role of MMP‐2 and TIMP‐2 in AoSMC migration was confirmed silencing MMP‐2 and TIMP‐2 in young and aged AoSMCs, respectively; therefore, in this study we showed that these enzymes play a pivotal role in the regulation of the AoSMC migration during in vitro aging.—Vigetti, D., Moretto, P., Viola, M., Genasetti, A., Rizzi, M., Karousou, E., Pallotti, F., De Luca, G., Passi, A. Matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases regulate human aortic smooth muscle cell migration during in vitro aging. FASEB J. 20, 1118–1130 (2006)


Journal of Biological Chemistry | 2011

Glycosaminoglycans and glucose prevent apoptosis in 4-methylumbelliferone treated human aortic smooth muscle cells

Davide Vigetti; Manuela Rizzi; Paola Moretto; Sara Deleonibus; Jonathan M. Dreyfuss; Evgenia Karousou; Manuela Viola; Moira Clerici; Vincent C. Hascall; Marco F. Ramoni; Giancarlo De Luca; Alberto Passi

Smooth muscle cells (SMCs) have a pivotal role in cardiovascular diseases and are responsible for hyaluronan (HA) deposition in thickening vessel walls. HA regulates SMC proliferation, migration, and inflammation, which accelerates neointima formation. We used the HA synthesis inhibitor 4-methylumbelliferone (4-MU) to reduce HA production in human aortic SMCs and found a significant increase of apoptotic cells. Interestingly, the exogenous addition of HA together with 4-MU reduced apoptosis. A similar anti-apoptotic effect was observed also by adding other glycosaminoglycans and glucose to 4-MU-treated cells. Furthermore, the anti-apoptotic effect of HA was mediated by Toll-like receptor 4, CD44, and PI3K but not by ERK1/2.


Journal of Biological Chemistry | 2013

Oxidized Low Density Lipoprotein (LDL) Affects Hyaluronan Synthesis in Human Aortic Smooth Muscle Cells

Manuela Viola; Barbara Bartolini; Davide Vigetti; Evgenia Karousou; Paola Moretto; Sara Deleonibus; Tatsuya Sawamura; Thomas N. Wight; Vincent C. Hascall; Giancarlo De Luca; Alberto Passi

Background: OxLDL and the high level of hyaluronan are major triggering factors of atherosclerosis. Results: The oxLDL load of the aortic human smooth muscle cells (SMC) via the scavenger receptor LOX-1 causes ER stress, overexpression of HAS2, and hyaluronan deposition. Conclusion: the oxidized sterols driven into the SMC by oxLDL have a role in hyaluronan metabolism. Significance: oxLDL influences extracellular matrix hyaluronan. Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20–50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

Collaboration


Dive into the Paola Moretto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge