Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evgenia Pak is active.

Publication


Featured researches published by Evgenia Pak.


Neuron | 2011

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD

Alan E. Renton; Elisa Majounie; Adrian James Waite; Javier Simón-Sánchez; Sara Rollinson; J. Raphael Gibbs; Jennifer C. Schymick; Hannu Laaksovirta; John C. van Swieten; Liisa Myllykangas; Hannu Kalimo; Anders Paetau; Yevgeniya Abramzon; Anne M. Remes; Alice Kaganovich; Sonja W. Scholz; Jamie Duckworth; Jinhui Ding; Daniel W. Harmer; Dena Hernandez; Janel O. Johnson; Kin Mok; Mina Ryten; Danyah Trabzuni; Rita Guerreiro; Richard W. Orrell; James Neal; Alexandra Murray; Justin Peter Pearson; Iris E. Jansen

The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.


Nature | 2003

Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome

Maria Eriksson; W Ted Brown; Leslie B. Gordon; Michael W. Glynn; Joel Singer; Laura J. Scott; Michael R. Erdos; Christiane M. Robbins; Tracy Moses; Peter Berglund; Amalia Dutra; Evgenia Pak; Sandra G. Durkin; Antonei B. Csoka; Michael Boehnke; Thomas W. Glover; Francis S. Collins

Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by features reminiscent of marked premature ageing. Here, we present evidence of mutations in lamin A (LMNA) as the cause of this disorder. The HGPS gene was initially localized to chromosome 1q by observing two cases of uniparental isodisomy of 1q—the inheritance of both copies of this material from one parent—and one case with a 6-megabase paternal interstitial deletion. Sequencing of LMNA, located in this interval and previously implicated in several other heritable disorders, revealed that 18 out of 20 classical cases of HGPS harboured an identical de novo (that is, newly arisen and not inherited) single-base substitution, G608G(GGC > GGT), within exon 11. One additional case was identified with a different substitution within the same codon. Both of these mutations result in activation of a cryptic splice site within exon 11, resulting in production of a protein product that deletes 50 amino acids near the carboxy terminus. Immunofluorescence of HGPS fibroblasts with antibodies directed against lamin A revealed that many cells show visible abnormalities of the nuclear membrane. The discovery of the molecular basis of this disease may shed light on the general phenomenon of human ageing.


Nature Genetics | 1998

Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas

Zhengping Zhuang; Won-Sang Park; Svetlana Pack; Laura S. Schmidt; Alexander O. Vortmeyer; Evgenia Pak; Thu Pham; Robert J. Weil; Sonja Candidus; Irina A. Lubensky; W. Marston Linehan; Berton Zbar; Gregor Weirich

The gene defect for hereditary papillary renal carcinoma (HPRC) has recently been mapped to chromosome 7q, and germline mutations of MET (also known as c-met) at 7q31 have been detected in patients with HPRC (ref. 2). Tumours from these patients commonly show trisomy of chromosome 7 when analysed by cytogenetic studies and comparative genomic hybridization (CGH). However, the relationship between trisomy 7 and MET germline mutations is not clear. We studied 16 renal tumours from two patients with documented germline mutations in exon 16 of MET. Flourescent in situ hybridization (FISH) analysis showed trisomy 7 in all tumours. To determine whether the chromosome bearing the mutant or wild-type MET gene was duplicated, we performed duplex PCR and phosphoimage densitometry using polymorphic microsatellite markers D7S1801 and D7S1822, which were linked to the disease gene locus, and D1S1646 as an internal control. We determined the parental origin of chromosome alleles by genotyping parental DNA. In all 16 tumours there was an increased signal intensity (2:1 ratio) of the microsatellite allele from the chromosome bearing the mutant MET compared with the allele from the chromosome bearing the wild-type MET. Our study demonstrates a non-random duplication of the chromosome bearing the mutated MET in HPRC and implicates this event in tumorigenesis.


The Lancet | 2003

Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study

Simon D. Tran; Stanley R. Pillemer; Amalia Dutra; A. John Barrett; Michael J. Brownstein; Sharon Key; Evgenia Pak; Rose Anne Leakan; Albert Kingman; Kenneth M. Yamada; Bruce J. Baum; Eva Mezey

BACKGROUND Adult bone marrow-derived (BMD) cells could be used to repair damaged organs and tissues, but the intrinsic plasticity of these cells has been questioned by results of in-vitro studies suggesting that such cells might fuse with other cells giving the appearance of differentiation. We aimed to determine whether fusion events are important in vivo. METHODS To test whether BMD cells can colonise an epithelial tissue and differentiate there without fusion, we did in-situ hybridisation with Y and X chromosome probes labelled with 35-sulphur or digoxigenin, or labelled fluorescently. We did immunohistochemistry with anticytokeratin 13 along with fluorescence in-situ hybridisation to identify Y-chromosome positive buccal epithelial cells in cheek scrapings obtained from five females who had received either a bone-marrow transplant or an allogeneic mobilised peripheral-blood progenitor-cell transplant (enriched in CD34+ cells) from male donors. FINDINGS When examined 4-6 years after male-to-female marrow-cell transplantation, all female recipients had Y-chromosome-positive buccal cells (0.8-12.7%). In more than 9700 cells studied, we detected only one XXXY-positive cell (0.01%) and one XXY cell (0.01%), both of which could have arisen when an XY cell fused with an XX cell. INTERPRETATION Male BMD cells migrate into the cheek and differentiate into epithelial cells, an occurrence that does not depend on fusion of BMD cells to recipient cells. This finding might be an example of transdifferentiation of haemopoietic or stromal progenitor cells. Plasticity of BMD cells could be useful in regenerative medicine.


Genes, Chromosomes and Cancer | 1999

Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations.

Svetlana Pack; Jayaprakash D. Karkera; Zhengping Zhuang; Evgenia Pak; Kannan V. Balan; Patrick Hwu; Wong Sang Park; Thu Pham; David O. Ault; Lance A. Liotta; Sevilla D. Detera-Wadleigh

Esophageal cancer is the third most prevalent gastrointestinal malignancy in the world. The tumor responds poorly to various therapeutic regimens and the genetic events underlying esophageal carcinogenesis are not well understood. To identify overall chromosomal aberrations in esophageal squamous cell carcinoma, we performed comparative genomic hybridization (CGH). All 17 tumor samples were found to exhibit multiple gains and losses involving different chromosomal regions. The frequency of chromosomal loss associated with this type of tumor was as follows: in 2q (100%), 3p (100%), 13q (100%), Xq (94%), 4 (82%), 5q (82%), 18q (76%), 9p (76%), 6q (70%), 12q (70%), 14q (65%), 11q (59%), and 1p (53%). Interstitial deletions on 1p, 3p, 5q, 6q, 11q, and 12q were detected also. Chromosomal gains were displayed by chromosomes and chromosome areas: 19 (100%), 20q (94%), 22 (94%), 16p (65%), 17 (59%), 12q (59%), 8q (53%), 9q (53%), and 3q (50%). Two sites showing apparent amplification were 11q (70%) and 5p15 (47%). To validate the CGH data, we isolated a BAC clone mapping to 18q12.1. This clone was used as a probe in interphase fluorescence in situ hybridization of tumor touch preparations and allelic loss was clearly revealed. This study represents the first whole‐genome analysis in esophageal squamous cell carcinoma for associated chromosomal aberrations that may be involved in either the genesis or progression of this malignancy. Genes Chromosomes Cancer 25:160–168, 1999.


Molecular and Cellular Biology | 2004

Regulation of Telomere Length and Suppression of Genomic Instability in Human Somatic Cells by Ku86

Kyungjae Myung; Goutam Ghosh; Farjana Fattah; Gang Li; Haeyoung Kim; Amalia Dutia; Evgenia Pak; Stephanie Smith; Eric A. Hendrickson

ABSTRACT Ku86 plays a key role in nonhomologous end joining in organisms as evolutionarily disparate as bacteria and humans. In eukaryotic cells, Ku86 has also been implicated in the regulation of telomere length although the effect of Ku86 mutations varies considerably between species. Indeed, telomeres either shorten significantly, shorten slightly, remain unchanged, or lengthen significantly in budding yeast, fission yeast, chicken cells, or plants, respectively, that are null for Ku86 expression. Thus, it has been unclear which model system is most relevant for humans. We demonstrate here that the functional inactivation of even a single allele of Ku86 in human somatic cells results in profound telomere loss, which is accompanied by an increase in chromosomal fusions, translocations, and genomic instability. Together, these experiments demonstrate that Ku86, separate from its role in nonhomologous end joining, performs the additional function in human somatic cells of suppressing genomic instability through the regulation of telomere length.


Journal of Clinical Investigation | 2009

TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans

A. Valance Washington; Sébastien Gibot; Ismael Acevedo; James Gattis; Laura Quigley; Robert Feltz; Alina De La Mota; Rebecca L. Schubert; Julio Gomez-Rodriguez; Jun Cheng; Amalia Dutra; Evgenia Pak; Oleg Chertov; Linette Rivera; Jessica Morales; Jacek Lubkowski; Robert Hunter; Pamela L. Schwartzberg; Daniel W. McVicar

Triggering receptor expressed on myeloid cells-like (TREM-like) transcript-1 (TLT-1), a type 1 single Ig domain orphan receptor specific to platelet and megakaryocyte alpha-granules, relocates to the platelet surface upon platelet stimulation. We found here that patients diagnosed with sepsis, in contrast to healthy individuals, had substantial levels of soluble TLT-1 (sTLT-1) in their plasma that correlated with the presence of disseminated intravascular coagulation. sTLT-1 bound to fibrinogen and augmented platelet aggregation in vitro. Furthermore, the cytoplasmic domain of TLT-1 could also bind ezrin/radixin/moesin family proteins, suggesting its ability to link fibrinogen to the platelet cytoskeleton. Accordingly, platelets of Treml1-/- mice failed to aggregate efficiently, extending tail-bleeding times. Lipopolysaccharide-treated Treml1-/- mice developed higher plasma levels of TNF and D-dimers than wild-type mice and were more likely to succumb during challenge. Finally, Treml1-/- mice were predisposed to hemorrhage associated with localized inflammatory lesions. Taken together, our findings suggest that TLT-1 plays a protective role during inflammation by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. Therefore, therapeutic modulation of TLT-1-mediated effects may provide clinical benefit to patients with hypercoagulatory conditions, including those associated with inflammation.


Neuro-oncology | 2009

EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors

Li Li; Amalia Dutra; Evgenia Pak; Joseph E. Labrie; Rachel M. Gerstein; Pier Paolo Pandolfi; Lawrence Recht; Alonzo H. Ross

Glioblastomas often show activation of epidermal growth factor receptor (EGFR) and loss of PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor, but it is not known if these two genetic lesions act together to transform cells. To answer this question, we infected PTEN-/- neural precursor cells with a retrovirus encoding EGFRvIII, which is a constitutively activated receptor. EGFRvIII PTEN-/- cells formed highly mitotic tumors with nuclear pleomorphism, necrotic areas, and glioblastoma markers. The transformed cells showed increased cell proliferation, centrosome amplification, colony formation in soft agar, self-renewal, expression of the stem cell marker CD133, and resistance to oxidative stress and ionizing radiation. The RAS/mitogen-activated protein kinase (ERK) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathways were activated, and checkpoint kinase 1 (Chk1), the DNA damage regulator, was phosphorylated at S280 by Akt, suppressing Chk1 phosphorylation at S345 in response to ionizing irradiation. The PTEN-/- cells showed low levels of DNA damage in the absence of irradiation, which was increased by EGFRvIII expression. Finally, secondary changes occurred during tumor growth in mice. Cells from these tumors showed decreased tumor latencies and additional chromosomal aberrations. Most of these tumor lines showed translocations of mouse chromosome 15. Intracranial injections of one of these lines led to invasive, glial fibrillary acidic protein-positive, nestin-positive tumors. These results provide a molecular basis for the occurrence of these two genetic lesions in brain tumors and point to a role in induction of genomic instability.


Haematologica | 2011

Myelodysplasia in autosomal dominant and sporadic monocytopenia immunodeficiency syndrome: diagnostic features and clinical implications

Katherine R. Calvo; Donald C. Vinh; Irina Maric; Weixin Wang; Pierre Noel; Maryalice Stetler-Stevenson; Diane C. Arthur; Mark Raffeld; Amalia Dutra; Evgenia Pak; Kyungjae Myung; Amy P. Hsu; Dennis D. Hickstein; Stefania Pittaluga; Steven M. Holland

A novel, genetic immunodeficiency syndrome has been recently described, herein termed “MonoMAC”. It is characterized by severe circulating monocytopenia, NK- and B-lymphocytopenia, severe infections with M. avium complex (MAC), and risk of progression to myelodysplasia/acute myelogenous leukemia. Detailed bone marrow analyses performed on 18 patients further define this disorder. The majority of patients had hypocellular marrows with reticulin fibrosis and multilineage dysplasia affecting the myeloid (72%), erythroid (83%) and megakaryocytic (100%) lineages. Cytogenetic abnormalities were present in 10 of 17 (59%). Despite B-lymphocytopenia, plasma cells were present but were abnormal (e.g. CD56+) in nearly half of cases. Increased T-cell large granular lymphocyte populations were present in 28% of patients. Chromosomal breakage studies, cell cycle checkpoint functions, and sequencing of TERT and K-RAS genes revealed no abnormalities. MonoMAC appears to be a unique, inherited syndrome of bone marrow failure. We describe distinctive bone marrow features to help in its recognition and diagnosis. (Clinicaltrials.gov identifiers: NCT00018044, NCT00923364, NCT01212055)


Journal of Bone and Mineral Research | 1999

The Human vitamin D receptor gene (VDR) is localized to region 12cen-q12 by fluorescent in situ hybridization and radiation hybrid mapping : Genetic and physical VDR map

Susan E. Taymans; Svetlana Pack; Evgenia Pak; Zsolt Orban; Julia Barsony; Zhengping Zhuang; Constantine A. Stratakis

The vitamin D receptor (VDR) is a member of the steroid hormone receptor superfamily of ligand‐activated transcription factors. The VDR gene was previously mapped to human chromosome 12q13–12q14, but its precise physical and genetic localization are unknown. The present study reports the mapping of the human VDR gene by radiation hybrid (RH) analysis, the isolation of a bacterial artificial chromosome (BAC) containing this gene, and physical mapping of the VDR gene by fluorescent in situ hybridization (FISH). RH analysis placed the VDR gene locus at chromosome 12cen‐q12, flanked by Stanford Human Genome Center (SHGC) 30216 and SHGC 9798 (D12S1892) markers. FISH analysis of a BAC containing the VDR gene confirmed its centromeric location. Thus, we have identified a BAC and genetic markers which can be used in the genetic analysis of the VDR gene and investigation of its involvement in osteoporosis and related disorders. We conclude that the VDR gene is centromeric to its previously reported locus on chromosome 12.

Collaboration


Dive into the Evgenia Pak's collaboration.

Top Co-Authors

Avatar

Amalia Dutra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Svetlana Pack

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhengping Zhuang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyungjae Myung

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Pemov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge