Evisa Gjini
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evisa Gjini.
Nature | 2017
Patrick A. Ott; Zhuting Hu; Derin B. Keskin; Sachet A. Shukla; Jing Sun; David J. Bozym; Wandi Zhang; Adrienne M. Luoma; Anita Giobbie-Hurder; Lauren Peter; Christina Chen; Oriol Olive; Todd A. Carter; Shuqiang Li; David J. Lieb; Thomas Eisenhaure; Evisa Gjini; Jonathan Stevens; William J. Lane; Indu Javeri; Kaliappanadar Nellaiappan; Andres M. Salazar; Heather Daley; Michael S. Seaman; Elizabeth I. Buchbinder; Charles H. Yoon; Maegan Harden; Niall J. Lennon; Stacey Gabriel; Scott J. Rodig
Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. We hypothesized that vaccination with neoantigens can both expand pre-existing neoantigen-specific T-cell populations and induce a broader repertoire of new T-cell specificities in cancer patients, tipping the intra-tumoural balance in favour of enhanced tumour control. Here we demonstrate the feasibility, safety, and immunogenicity of a vaccine that targets up to 20 predicted personal tumour neoantigens. Vaccine-induced polyfunctional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97 unique neoantigens used across patients, respectively. These T cells discriminated mutated from wild-type antigens, and in some cases directly recognized autologous tumour. Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells. These data provide a strong rationale for further development of this approach, alone and in combination with checkpoint blockade or other immunotherapies.
JAMA Oncology | 2016
Brooke E. Howitt; Heather Sun; Margaretha G. M. Roemer; Alyssa Kelley; Bjoern Chapuy; Emeline M. Aviki; Christine Pak; Courtney Connelly; Evisa Gjini; Yunling Shi; Larissa J. Lee; Akila N. Viswanathan; Neil S. Horowitz; Donna Neuberg; Christopher P. Crum; Neal L. Lindeman; Frank C. Kuo; Azra H. Ligon; Gordon J. Freeman; F. Stephen Hodi; Margaret A. Shipp; Scott J. Rodig
IMPORTANCE Patients with squamous cell carcinoma (SCC) of the cervix or vulva have limited therapeutic options, and the potential for immunotherapy for this population has not been evaluated. Recent trials suggest that tumors with a genetic basis for PD-1 (programmed cell death protein 1) ligand expression are highly sensitive to therapeutic antibodies targeting PD-1. OBJECTIVE To determine the genetic status of CD274 (encoding PD-L1 [programmed cell death 1 ligand 1]) and PDCD1LG2 (encoding PD-L2 [programmed cell death 1 ligand 2]) in SCCs of the cervix and vulva and to correlate the findings with PD-L1 protein expression. DESIGN, SETTING, AND PARTICIPANTS We performed fluorescence in situ hybridization (FISH) using probes targeting CD274, PDCD1LG2, and the centromeric portion of chromosome 9, and immunohistochemistry (IHC) using an antibody recognizing PD-L1 on formalin-fixed, paraffin-embedded (FFPE) biopsy specimens from 48 cervical SCCs and 23 vulvar SCCs. MAIN OUTCOMES AND MEASURES Tumors were categorized according to the genetic abnormality in CD274 and PDCD1LG2 (coamplification > cogain > polysomy > disomy) as detected by FISH, and evaluated on a semiquantitative scale (modified H score, the product of the percentage of tumor cells with positive staining and the maximum intensity of positive staining) for PD-L1 protein expression as detected by IHC. RESULTS Overall, 71 samples of FFPE tissue from cases of cervical SCCs (n = 48) and vulvar SCCs (n = 23) were retrieved from the archives of Brigham and Womens Hospital and included in this study. We observed cogain or coamplification of CD274 and PDCD1LG2 in 32 of 48 cervical SCCs (67%) and 10 of 23 vulvar SCCs (43%). Median PD-L1 protein expression was highest among tumors with CD274 and PDCD1LG2 coamplification and lowest among tumors with disomy. CONCLUSIONS AND RELEVANCE Recurrent copy number gain of the genes encoding the PD-1 ligands provides a genetic basis for PD-L1 expression in a subset of cervical and vulvar SCCs and identifies a class of patients that are rational candidates for therapies targeting PD-1.
Blood | 2017
Christopher D. Carey; Daniel Gusenleitner; Mikel Lipschitz; Margaretha G. M. Roemer; Edward Stack; Evisa Gjini; Xihao Hu; Robert Redd; Gordon J. Freeman; Donna Neuberg; F. Stephen Hodi; Xiaole Shirley Liu; Margaret A. Shipp; Scott J. Rodig
Signaling between programmed cell death protein 1 (PD-1) and the PD-1 ligands (PD-L1, PD-L2) is essential for malignant Hodgkin Reed-Sternberg (HRS) cells to evade antitumor immunity in classical Hodgkin lymphoma (cHL). Copy number alterations of 9p24.1/CD274(PD-L1)/PDCD1LG2(PD-L2) contribute to robust PD-L1 and PD-L2 expression by HRS cells. PD-L1 is also expressed by nonmalignant tumor-associated macrophages (TAMs), but the relationships among PD-L1+ HRS cells, PD-L1+ TAMs, and PD-1+ T cells remain undefined. We used multiplex immunofluorescence and digital image analysis to examine the topography of PD-L1+ and PD-1+ cells in the tumor microenvironment (TME) of cHL. We find that the majority of PD-L1 in the TME is expressed by the abundant PD-L1+ TAMs, which physically colocalize with PD-L1+ HRS cells in a microenvironmental niche. PD-L1+ TAMs are enriched for contacts with T cells, and PD-L1+ HRS cells are enriched for contacts with CD4+ T cells, a subset of which are PD-1+ Our data define a unique topology of cHL in which PD-L1+ TAMs surround HRS cells and implicate CD4+ T cells as a target of PD-1 blockade.
Cancer immunology research | 2017
Xinqi Wu; Anita Giobbie-Hurder; Xiaoyun Liao; Courtney Connelly; Erin M. Connolly; Jingjing Li; Michael P. Manos; Donald P. Lawrence; David F. McDermott; Mariano Severgnini; Jun Zhou; Evisa Gjini; Ana Lako; Mikel Lipschitz; Christine Pak; Sara Abdelrahman; Scott J. Rodig; F. Stephen Hodi
Outcomes for metastatic melanoma patients treated with checkpoint blockade were poor when circulating Ang-2 was high. Ang-2 promoted recruitment of tumor macrophages and upregulated PD-L1, making it a predictive and/or prognostic biomarker and potential target to combine with checkpoint blockade. Immune checkpoint therapies targeting CTLA-4 and PD-1 have proven effective in cancer treatment. However, the identification of biomarkers for predicting clinical outcomes and mechanisms to overcome resistance remain as critical needs. Angiogenesis is increasingly appreciated as an immune modulator with potential for combinatorial use with checkpoint blockade. Angiopoietin-2 (ANGPT2) is an immune target in patients and is involved in resistance to anti-VEGF treatment with the monoclonal antibody bevacizumab. We investigated the predictive and prognostic value of circulating ANGPT2 in metastatic melanoma patients receiving immune checkpoint therapy. High pretreatment serum ANGPT2 was associated with reduced overall survival in CTLA-4 and PD-1 blockade–treated patients. These treatments also increased serum ANGPT2 in many patients early after treatment initiation, whereas ipilimumab plus bevacizumab treatment decreased serum concentrations. ANGPT2 increases were associated with reduced response and/or overall survival. Ipilimumab increased, and ipilimumab plus bevacizumab decreased, tumor vascular ANGPT2 expression in a subset of patients, which was associated with increased and decreased tumor infiltration by CD68+ and CD163+ macrophages, respectively. In vitro, bevacizumab blocked VEGF-induced ANGPT2 expression in tumor-associated endothelial cells, whereas ANGPT2 increased PD-L1 expression on M2-polarized macrophages. Treatments elicited long-lasting and functional antibody responses to ANGPT2 in a subset of patients receiving clinical benefit. Our findings suggest that serum ANGPT2 may be considered as a predictive and prognostic biomarker for immune checkpoint therapy and may contribute to treatment resistance via increasing proangiogenic and immunosuppressive activities in the tumor microenvironment. Targeting ANGPT2 provides a rational combinatorial approach to improve the efficacy of immune therapy. Cancer Immunol Res; 5(1); 17–28. ©2016 AACR.
Molecular and Cellular Biology | 2015
Evisa Gjini; Marc R. Mansour; Jeffry D. Sander; Nadine Moritz; Ashley T. Nguyen; Michiel Kesarsing; Emma Gans; Shuning He; Si Chen; Myunggon Ko; You-Yi Kuang; Song Yang; Yi Zhou; Scott J. Rodig; Leonard I. Zon; J. Keith Joung; Anjana Rao; A. Thomas Look
ABSTRACT The ten-eleven translocation 2 gene (TET2) encodes a member of the TET family of DNA methylcytosine oxidases that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to initiate the demethylation of DNA within genomic CpG islands. Somatic loss-of-function mutations of TET2 are frequently observed in human myelodysplastic syndrome (MDS), which is a clonal malignancy characterized by dysplastic changes of developing blood cell progenitors, leading to ineffective hematopoiesis. We used genome-editing technology to disrupt the zebrafish Tet2 catalytic domain. tet2m/m (homozygous for the mutation) zebrafish exhibited normal embryonic and larval hematopoiesis but developed progressive clonal myelodysplasia as they aged, culminating in myelodysplastic syndromes (MDS) at 24 months of age, with dysplasia of myeloid progenitor cells and anemia with abnormal circulating erythrocytes. The resultant tet2m/m mutant zebrafish lines show decreased levels of 5hmC in hematopoietic cells of the kidney marrow but not in other cell types, most likely reflecting the ability of other Tet family members to provide this enzymatic activity in nonhematopoietic tissues but not in hematopoietic cells. tet2m/m zebrafish are viable and fertile, providing an ideal model to dissect altered pathways in hematopoietic cells and, for small-molecule screens in embryos, to identify compounds with specific activity against tet2 mutant cells.
eLife | 2016
Shuning He; Marc R. Mansour; Mark W. Zimmerman; Dong Hyuk Ki; Hillary M. Layden; Koshi Akahane; Evisa Gjini; Eric D. de Groh; Antonio R. Perez-Atayde; Shizhen Zhu; Jonathan A. Epstein; A. Thomas Look
Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation. DOI: http://dx.doi.org/10.7554/eLife.14713.001
Leukemia | 2016
Nicole M. Anderson; Dun Li; H L Peng; Fabrice Laroche; Marc R. Mansour; Evisa Gjini; M Aioub; Daniel Helman; Justine E. Roderick; T Cheng; Itrat Harrold; Y. Samaha; L Meng; Adam Amsterdam; Donna Neuberg; Travis T. Denton; Takaomi Sanda; Michelle A. Kelliher; Anurag Singh; A T Look; Hui Feng
Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the α-ketoglutarate (α-KG) dehydrogenase complex (KGDHC), which converts α-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of α-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.
Cancer immunology research | 2016
Vishwajith Sridharan; Evisa Gjini; Xiaoyun Liao; Nicole G. Chau; Robert I. Haddad; Mariano Severgnini; Peter S. Hammerman; Adel K. El-Naggar; Gordon J. Freeman; F. Stephen Hodi; Scott J. Rodig; Glenn Dranoff; Jonathan D. Schoenfeld
PD-1 ligand expression and T-cell infiltration may predict responsiveness to PD-1 pathway inhibitors. ACC tumors expressed PD-L2 and the Wnt and PI3K pathways but had little immune infiltration. Chemoradiotherapy promoted antitumor responses, suggesting potential synergies with PD-1 blockade. Adenoid cystic carcinoma (ACC) is among the most lethal salivary gland tumors, with no treatments for metastatic disease that prolong survival. We examined tissue from 28 primary and metastatic ACC deposits obtained from 21 patients for infiltrating immune cells and PD-L1/PD-L2 expression and determined mRNA profiles of over 1,400 oncogenic and immune-related genes. We also assessed the effect of chemoradiation on immune mediators in a patient who had serial biopsies available. Most tumors expressed PD-L2 but had few infiltrating immune cells. Lack of immune-cell infiltrate was associated with expression of genes in the β-catenin/Wnt and PI3K pathways. Additionally, certain transcripts linked to growth and invasion were differentially expressed among primary and metastatic deposits. Chemoradiation appeared to increase CD8+ effector T cells, decrease regulatory T cells, and promote a systemic humoral response. These data suggest a potential role for PD-L2 inhibition and immune modulation as treatment for patients with ACC. Cancer Immunol Res; 4(8); 679–87. ©2016 AACR.
British Journal of Haematology | 2017
Koshi Akahane; Zhaodong Li; Julia Etchin; Alla Berezovskaya; Evisa Gjini; Craig E. Masse; Wenyan Miao; Jennifer Rocnik; Rosana Kapeller; Jeremy R. Greenwood; Hong Tiv; Takaomi Sanda; David M. Weinstock; A. Thomas Look
Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T‐cell acute lymphoblastic leukaemia (T‐ALL) cells. Here we demonstrate the anti‐leukaemic activity of a novel TYK2 inhibitor, NDI‐031301. NDI‐031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T‐ALL cell lines. NDI‐031301 treatment of human T‐ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI‐031301 treatment uniquely leads to activation of three mitogen‐activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI‐031301 treatment and was responsible for NDI‐031301‐induced T‐ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI‐031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT‐K1 T‐ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T‐ALL.
Science Translational Medicine | 2018
Scott J. Rodig; Daniel Gusenleitner; Donald G. Jackson; Evisa Gjini; Anita Giobbie-Hurder; Chelsea Jin; Han Chang; Scott B. Lovitch; Christine Horak; Jeffrey S. Weber; Jason L. Weirather; Jedd D. Wolchok; Michael A. Postow; Anna C. Pavlick; Jason Chesney; F. Stephen Hodi
Loss of membrane MHC class I protein expression in most of tumor cells in advanced melanomas predicts primary resistance to anti–CTLA-4, but not anti-PD1, treatment. MHC-ing immunotherapy response Currently, there is no way to predict response to anti–CTLA-4 cancer immunotherapy. Using data from two published independent phase 2 clinical trials, Rodig et al. showed that MHC class I expression in advanced melanoma predicted resistance to anti–CTLA-4, but not anti-PD-1, treatment, which may need MHC class II to be effective. These results may explain why patients on combined therapy do better on average, with one drug overcoming the limitations of the other. The combination is also more toxic than single agents; knowing which drug to administer to which patients could make melanoma immunotherapy less taxing without sacrificing efficacy. Combination anti–cytotoxic T lymphocyte antigen 4 (CTLA-4) and anti–programmed cell death protein 1 (PD-1) therapy promotes antitumor immunity and provides superior benefit to patients with advanced-stage melanoma compared with either therapy alone. T cell immunity requires recognition of antigens in the context of major histocompatibility complex (MHC) class I and class II proteins by CD8+ and CD4+ T cells, respectively. We examined MHC class I and class II protein expression on tumor cells from previously untreated melanoma patients and correlated the results with transcriptional and genomic analyses and with clinical response to anti–CTLA-4, anti–PD-1, or combination therapy. Most (>50% of cells) or complete loss of melanoma MHC class I membrane expression was observed in 78 of 181 cases (43%), was associated with transcriptional repression of HLA-A, HLA-B, HLA-C, and B2M, and predicted primary resistance to anti–CTLA-4, but not anti–PD-1, therapy. Melanoma MHC class II membrane expression on >1% cells was observed in 55 of 181 cases (30%), was associated with interferon-γ (IFN-γ) and IFN-γ–mediated gene signatures, and predicted response to anti–PD-1, but not anti–CTLA-4, therapy. We conclude that primary response to anti–CTLA-4 requires robust melanoma MHC class I expression. In contrast, primary response to anti–PD-1 is associated with preexisting IFN-γ–mediated immune activation that includes tumor-specific MHC class II expression and components of innate immunity when MHC class I is compromised. The benefits of combined checkpoint blockade may be attributable, in part, to distinct requirements for melanoma-specific antigen presentation to initiate antitumor immunity.