Scott J. Rodig
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott J. Rodig.
Cell | 1996
Marco A Meraz; J. Michael White; Kathleen C. F. Sheehan; Erika A. Bach; Scott J. Rodig; Anand S. Dighe; Kaplan Dh; Joan K. Riley; Andrew C. Greenlund; Dayle Campbell; Karen Carver-Moore; Raymond N. DuBois; Ross G. Clark; Michel Aguet; Robert D. Schreiber
The JAK-STAT signaling pathway has been implicated in mediating biological responses induced by many cytokines. However, cytokines that promote distinct cellular responses often activate identical STAT proteins, thereby raising the question of how specificity is manifest within this signaling pathway. Here we report the generation and characterization of mice deficient in STAT1. STAT1-deficient mice show no overt developmental abnormalities, but display a complete lack of responsiveness to either IFN alpha or IFN gamma and are highly sensitive to infection by microbial pathogens and viruses. In contrast, these mice respond normally to several other cytokines that activate STAT1 in vitro. These observations document that STAT1 plays an obligate and dedicated role in mediating IFN-dependent biologic responses and reveal an unexpected level of physiologic specificity for STAT1 action.
The New England Journal of Medicine | 2015
Stephen M. Ansell; Alexander M. Lesokhin; Ivan Borrello; Ahmad Halwani; Emma C. Scott; Martin Gutierrez; Stephen J. Schuster; Michael Millenson; Deepika Cattry; Gordon J. Freeman; Scott J. Rodig; Bjoern Chapuy; Azra H. Ligon; Lili Zhu; Joseph F. Grosso; Su Y oung Kim; John M. Timmerman; Margaret A. Shipp; Philippe Armand
BACKGROUND Preclinical studies suggest that Reed-Sternberg cells exploit the programmed death 1 (PD-1) pathway to evade immune detection. In classic Hodgkins lymphoma, alterations in chromosome 9p24.1 increase the abundance of the PD-1 ligands, PD-L1 and PD-L2, and promote their induction through Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. We hypothesized that nivolumab, a PD-1-blocking antibody, could inhibit tumor immune evasion in patients with relapsed or refractory Hodgkins lymphoma. METHODS In this ongoing study, 23 patients with relapsed or refractory Hodgkins lymphoma that had already been heavily treated received nivolumab (at a dose of 3 mg per kilogram of body weight) every 2 weeks until they had a complete response, tumor progression, or excessive toxic effects. Study objectives were measurement of safety and efficacy and assessment of the PDL1 and PDL2 (also called CD274 and PDCD1LG2, respectively) loci and PD-L1 and PD-L2 protein expression. RESULTS Of the 23 study patients, 78% were enrolled in the study after a relapse following autologous stem-cell transplantation and 78% after a relapse following the receipt of brentuximab vedotin. Drug-related adverse events of any grade and of grade 3 occurred in 78% and 22% of patients, respectively. An objective response was reported in 20 patients (87%), including 17% with a complete response and 70% with a partial response; the remaining 3 patients (13%) had stable disease. The rate of progression-free survival at 24 weeks was 86%; 11 patients were continuing to participate in the study. Reasons for discontinuation included stem-cell transplantation (in 6 patients), disease progression (in 4 patients), and drug toxicity (in 2 patients). Analyses of pretreatment tumor specimens from 10 patients revealed copy-number gains in PDL1 and PDL2 and increased expression of these ligands. Reed-Sternberg cells showed nuclear positivity of phosphorylated STAT3, indicative of active JAK-STAT signaling. CONCLUSIONS Nivolumab had substantial therapeutic activity and an acceptable safety profile in patients with previously heavily treated relapsed or refractory Hodgkins lymphoma. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT01592370.).
Journal of Clinical Oncology | 2009
Alice T. Shaw; Beow Y. Yeap; Mari Mino-Kenudson; Subba R. Digumarthy; Daniel B. Costa; Rebecca S. Heist; Benjamin Solomon; Hannah Stubbs; Sonal Admane; Ultan McDermott; Jeffrey Settleman; Susumu Kobayashi; Eugene J. Mark; Scott J. Rodig; Lucian R. Chirieac; Eunice L. Kwak; Thomas J. Lynch; A. John Iafrate
PURPOSE The EML4-ALK fusion oncogene represents a novel molecular target in a small subset of non-small-cell lung cancers (NSCLC). To aid in identification and treatment of these patients, we examined the clinical characteristics and treatment outcomes of patients who had NSCLC with and without EML4-ALK. PATIENTS AND METHODS Patients with NSCLC were selected for genetic screening on the basis of two or more of the following characteristics: female sex, Asian ethnicity, never/light smoking history, and adenocarcinoma histology. EML4-ALK was identified by using fluorescent in situ hybridization for ALK rearrangements and was confirmed by immunohistochemistry for ALK expression. EGFR and KRAS mutations were determined by DNA sequencing. RESULTS Of 141 tumors screened, 19 (13%) were EML4-ALK mutant, 31 (22%) were EGFR mutant, and 91 (65%) were wild type (WT/WT) for both ALK and EGFR. Compared with the EGFR mutant and WT/WT cohorts, patients with EML4-ALK mutant tumors were significantly younger (P < .001 and P = .005) and were more likely to be men (P = .036 and P = .039). Patients with EML4-ALK-positive tumors, like patients who harbored EGFR mutations, also were more likely to be never/light smokers compared with patients in the WT/WT cohort (P < .001). Eighteen of the 19 EML4-ALK tumors were adenocarcinomas, predominantly the signet ring cell subtype. Among patients with metastatic disease, EML4-ALK positivity was associated with resistance to EGFR tyrosine kinase inhibitors (TKIs). Patients in the EML4-ALK cohort and the WT/WT cohort showed similar response rates to platinum-based combination chemotherapy and no difference in overall survival. CONCLUSION EML4-ALK defines a molecular subset of NSCLC with distinct clinical characteristics. Patients who harbor this mutation do not benefit from EGFR TKIs and should be directed to trials of ALK-targeted agents.
Nature | 2007
Catherine M. Koebel; William Vermi; Jeremy B. Swann; Nadeen Zerafa; Scott J. Rodig; Lloyd J. Old; Mark J. Smyth; Robert D. Schreiber
The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.
Cell | 1998
Scott J. Rodig; Marco A Meraz; J. Michael White; Pat A Lampe; Joan K. Riley; Cora D. Arthur; Kathleen L. King; Kathleen C. F. Sheehan; Li Yin; Diane Pennica; Eugene M. Johnson; Robert D. Schreiber
Herein we report the generation of mice lacking the ubiquitously expressed Janus kinase, Jak1. Jak1-/- mice are runted at birth, fail to nurse, and die perinatally. Although Jak1-/- cells are responsive to many cytokines, they fail to manifest biologic responses to cytokines that bind to three distinct families of cytokine receptors. These include all class II cytokine receptors, cytokine receptors that utilize the gamma(c) subunit for signaling, and the family of cytokine receptors that depend on the gp130 subunit for signaling. Our results thus demonstrate that Jak1 plays an essential and nonredundant role in promoting biologic responses induced by a select subset of cytokine receptors, including those in which Jak utilization was thought to be nonspecific.
The New England Journal of Medicine | 2012
Steven P. Treon; Lian Xu; Guang Yang; Yangsheng Zhou; Xia Liu; Yang Cao; Patricia Sheehy; Robert Manning; Christopher J. Patterson; Christina Tripsas; Luca Arcaini; Geraldine S. Pinkus; Scott J. Rodig; Aliyah R. Sohani; Nancy Lee Harris; Jason M. Laramie; Donald A Skifter; Stephen E Lincoln; Zachary R. Hunter
BACKGROUND Waldenströms macroglobulinemia is an incurable, IgM-secreting lymphoplasmacytic lymphoma (LPL). The underlying mutation in this disorder has not been delineated. METHODS We performed whole-genome sequencing of bone marrow LPL cells in 30 patients with Waldenströms macroglobulinemia, with paired normal-tissue and tumor-tissue sequencing in 10 patients. Sanger sequencing was used to validate the findings in samples from an expanded cohort of patients with LPL, those with other B-cell disorders that have some of the same features as LPL, and healthy donors. RESULTS Among the patients with Waldenströms macroglobulinemia, a somatic variant (T→C) in LPL cells was identified at position 38182641 at 3p22.2 in the samples from all 10 patients with paired tissue samples and in 17 of 20 samples from patients with unpaired samples. This variant predicted an amino acid change (L265P) in MYD88, a mutation that triggers IRAK-mediated NF-κB signaling. Sanger sequencing identified MYD88 L265P in tumor samples from 49 of 54 patients with Waldenströms macroglobulinemia and in 3 of 3 patients with non-IgM-secreting LPL (91% of all patients with LPL). MYD88 L265P was absent in paired normal tissue samples from patients with Waldenströms macroglobulinemia or non-IgM LPL and in B cells from healthy donors and was absent or rarely expressed in samples from patients with multiple myeloma, marginal-zone lymphoma, or IgM monoclonal gammopathy of unknown significance. Inhibition of MYD88 signaling reduced IκBα and NF-κB p65 phosphorylation, as well as NF-κB nuclear staining, in Waldenströms macroglobulinemia cells expressing MYD88 L265P. Somatic variants in ARID1A in 5 of 30 patients (17%), leading to a premature stop or frameshift, were also identified and were associated with an increased disease burden. In addition, 2 of 3 patients with Waldenströms macroglobulinemia who had wild-type MYD88 had somatic variants in MLL2. CONCLUSIONS MYD88 L265P is a commonly recurring mutation in patients with Waldenströms macroglobulinemia that can be useful in differentiating Waldenströms macroglobulinemia and non-IgM LPL from B-cell disorders that have some of the same features. (Funded by the Peter and Helen Bing Foundation and others.).
Blood | 2010
Michael R. Green; Stefano Monti; Scott J. Rodig; Przemyslaw Juszczynski; Treeve Currie; Evan O'Donnell; Bjoern Chapuy; Kunihiko Takeyama; Donna Neuberg; Todd R. Golub; Jeffery L. Kutok; Margaret A. Shipp
Classical Hodgkin lymphoma (cHL) and mediastinal large B-cell lymphoma (MLBCL) are lymphoid malignancies with certain shared clinical, histologic, and molecular features. Primary cHLs and MLBCLs include variable numbers of malignant cells within an inflammatory infiltrate, suggesting that these tumors escape immune surveillance. Herein, we integrate high-resolution copy number data with transcriptional profiles and identify the immunoregulatory genes, PD-L1 and PD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines. We extend these findings to laser-capture microdissected primary Hodgkin Reed-Sternberg cells and primary MLBCLs and find that programmed cell death-1 (PD-1) ligand/9p24.1 amplification is restricted to nodular sclerosing HL, the cHL subtype most closely related to MLBCL. Using quantitative immunohistochemical methods, we document the association between 9p24.1 copy number and PD-1 ligand expression in primary tumors. In cHL and MLBCL, the extended 9p24.1 amplification region also included the Janus kinase 2 (JAK2) locus. Of note, JAK2 amplification increased protein expression and activity, specifically induced PD-1 ligand transcription and enhanced sensitivity to JAK2 inhibition. Therefore, 9p24.1 amplification is a disease-specific structural alteration that increases both the gene dosage of PD-1 ligands and their induction by JAK2, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.
Clinical Cancer Research | 2009
Scott J. Rodig; Mari Mino-Kenudson; Sanja Dacic; Beow Y. Yeap; Alice T. Shaw; Justine A. Barletta; Hannah Stubbs; Kenneth Law; Neal I. Lindeman; Eugene J. Mark; Pasi A. Jänne; Thomas R. Lynch; Bruce E. Johnson; Anthony John Iafrate; Lucian R. Chirieac
Purpose: The anaplastic large cell kinase gene (ALK) is rearranged in ∼5% of lung adenocarcinomas within the Asian population. We evaluated the incidence and the characteristics of ALK-rearranged lung adenocarcinomas within the western population and the optimal diagnostic modality to detect ALK rearrangements in routine clinical practice. Experimental Design: We tested 358 lung adenocarcinomas from three institutions for ALK rearrangements by fluorescent in situ hybridization (FISH) and immunohistochemistry with and without tyramide amplification. The clinicopathologic characteristics of tumors with and without ALK rearrangements were compared. Results: We identified 20 (5.6%) lung adenocarcinomas with ALK rearrangements within our cohort of western patients. ALK rearrangement was associated with younger age (P = 0.0002), never smoking (P < 0.0001), advanced clinical stage (P = 0.0001), and a solid histology with signet-ring cells (P < 0.0001). ALK rearrangement was identified by FISH in 95% of cases and immunohistochemistry with and without tyramide amplification in 80% and 40% of cases, respectively, but neither FISH nor immunohistochemistry alone detected all cases with ALK rearrangement on initial screening. None of the ALK-rearranged tumors harbored coexisting EGFR mutations. Conclusions: Lung adenocarcinomas with ALK rearrangements are uncommon in the western population and represent a distinct entity of carcinomas with unique characteristics. For suspected cases, dual diagnostic testing, with FISH and immunohistochemistry, should be considered to accurately identify lung adenocarcinomas with ALK rearrangement. (Clin Cancer Res 2009;15(16):5216–23)
The New England Journal of Medicine | 2010
James E. Butrynski; David R. D'Adamo; Jason L. Hornick; Dal Cin P; Cristina R. Antonescu; Jhanwar Sc; Marc Ladanyi; Marzia Capelletti; Scott J. Rodig; Nikhil H. Ramaiya; E. L. Kwak; Jeffrey W. Clark; Keith D. Wilner; James G. Christensen; Pasi A. Jänne; Robert G. Maki; George D. Demetri; Geoffrey I. Shapiro
Inflammatory myofibroblastic tumor (IMT) is a distinctive mesenchymal neoplasm characterized by a spindle-cell proliferation with an inflammatory infiltrate. Approximately half of IMTs carry rearrangements of the anaplastic lymphoma kinase (ALK) locus on chromosome 2p23, causing aberrant ALK expression. We report a sustained partial response to the ALK inhibitor crizotinib (PF-02341066, Pfizer) in a patient with ALK-translocated IMT, as compared with no observed activity in another patient without the ALK translocation. These results support the dependence of ALK-rearranged tumors on ALK-mediated signaling and suggest a therapeutic strategy for genomically identified patients with the aggressive form of this soft-tissue tumor. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).
Cancer Discovery | 2013
Esra A. Akbay; Shohei Koyama; Julian Carretero; Abigail Altabef; Jeremy H. Tchaicha; Camilla L. Christensen; Oliver R. Mikse; Andrew D. Cherniack; Ellen M. Beauchamp; Trevor J. Pugh; Matthew D. Wilkerson; Peter E. Fecci; Mohit Butaney; Jacob B. Reibel; Margaret Soucheray; Travis J. Cohoon; Pasi A. Jänne; Matthew Meyerson; D. Neil Hayes; Geoffrey I. Shapiro; Takeshi Shimamura; Lynette M. Sholl; Scott J. Rodig; Gordon J. Freeman; Peter S. Hammerman; Glenn Dranoff; Kwok-Kin Wong
UNLABELLED The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. SIGNIFICANCE We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.