Ewan R. Cameron
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ewan R. Cameron.
Nature Reviews Cancer | 2005
Karen Blyth; Ewan R. Cameron; James C. Neil
The RUNX genes have come to prominence recently because of their roles as essential regulators of cell fate in development and their paradoxical effects in cancer, in which they can function either as tumour-suppressor genes or dominant oncogenes according to context. How can this family of transcription factors have such an ambiguous role in cancer? How and where do these genes impinge on the pathways that regulate growth control and differentiation? And what is the evidence for a wider role for the RUNX genes in non-haematopoietic cancers?
Oncogene | 2004
Ewan R. Cameron; James C. Neil
The Runx genes present a challenge to the simple binary classification of cancer genes as oncogenes or tumor suppressors. There is evidence that loss of function of two of the three mammalian Runx genes promotes cancer, but in a highly lineage-restricted manner. In human leukemias, the RUNX1 gene is involved in various chromosomal translocation events that create oncogenic fusion proteins, at least some of which appear to function as dominant-negative inhibitors of the normal gene product. Paradoxically, evidence is mounting that structurally intact Runx genes are also oncogenic when overexpressed. All the three murine genes act as targets for transcriptional activation by retroviral insertional mutagenesis, and the oncogenic potential of Runx2 has been confirmed in transgenic mice. Moreover, the RUNX1 gene is often amplified or overexpressed in cases of acute leukemia. The state of progress in elucidating the oncogenic roles of the Runx genes is the subject of this review, and we draw together recent observations in a tentative model for the effects of Runx deregulation on hematopoietic cell differentiation. We suggest that lineage-specific factors determine the sensitivity to the oncogenic effects of loss or overexpression of Runx factors.
Nature | 2006
Adrian J. Thrasher; H. B. Gaspar; Christopher Baum; Ute Modlich; Axel Schambach; Fabio Candotti; Makoto Otsu; B. Sorrentino; Linda Scobie; Ewan R. Cameron; Karen Blyth; James C. Neil; S.H.-B. Abina; Marina Cavazzana-Calvo; Alain Fischer
Arising from: Woods, N.-B., Bottero, V., Schmidt, M., von Kalle, C. & Verma, I. M. 440, 1123 (2006); see also communication from Pike-Overzet et al.; Woods et al. replyGene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the γ-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.
Oncogene | 2001
Karen Blyth; Anne Terry; Nancy Mackay; François Vaillant; Margaret Bell; Ewan R. Cameron; James C. Neil; Monica Stewart
The Runx2 (Cbfa1, Pebp2αA, Aml3) gene was previously identified as a frequent target for transcriptional activation by proviral insertion in T-cell lymphomas of CD2-MYC transgenic mice. We have recently shown that over-expression of the full-length, most highly expressed Runx2 isoform in the thymus perturbs T-cell development, leads to development of spontaneous lymphomas at low frequency and is strongly synergistic with Myc. To gain further insight into the relationship of Runx2 to other lymphomagenic pathways, we tested the effect of combining the CD2-Runx2 transgene either with a Pim1 transgene (Eμ-Pim1) or with the p53 null genotype, as each of these displays independent synergy with Myc. In both cases we observed synergistic tumour development. However, Runx2 appeared to have a dominant effect on the tumour phenotype in each case, with most tumours conforming to the CD3+, CD8+, CD4+/− phenotype seen in CD2-Runx2 mice. Neonatal infection of CD2-Runx2 mice with Moloney murine leukaemia virus (Moloney MLV) also led to a dramatic acceleration of tumour onset. Analysis of known Moloney MLV target genes in these lymphomas showed a high frequency of rearrangement at c-Myc or N-Myc (82%), and a significant number at Pim1 or Pim2 (23%), and at Pal1/Gfi1 (18%). These results indicate that Runx2 makes a distinct contribution to T-cell lymphoma development which does not coincide with any of the oncogene complementation groups previously identified by retroviral tagging.
Molecular Biotechnology | 1997
Ewan R. Cameron
Techniques that allow modification of the mammalian genome have made a considerable contribution to many areas of biological science. Despite these achievements, challenges remain in two principal areas of transgenic technology, namely gene regulation and efficient transgenic livestock production. Obtaining reliable and sophisticated expression that rivals that of endogenous genes is frequently problematic. Transgenic science has played an important part in increasing understanding of the complex processes that underlie gene regulation, and this in turn has assisted in the design of transgene constructs expressed in a tightly regulated and faithful manner. The production of transgenic livestock is an inefficient process compared to that of laboratory models, and the lack of totipotential embryonic stem (ES) cell lins in farm animal species hampers the development of this area of work. This article highlights recent progress in efficient transgene expression systems, and the current efforts being made to find alternative means of generating transgenic livestock.
Oncogene | 1999
François Vaillant; Karen Blyth; Anne Terry; Margaret Bell; Ewan R. Cameron; James C. Neil; Monica Stewart
The Cbfa1/PEBP2αA/AML3 gene plays an essential role in osteogenesis but is also expressed in the T-cell lineage where it has been implicated in lymphoma development as a target for retroviral insertional mutagenesis. As lymphoma cells with til-1 insertion express at least five distinct Cbfa1 isoforms, it is important to establish which, if any, have intrinsic oncogenic potential. We have generated transgenic mice in which the most abundant lymphoma isoform (G1/p57) is expressed under the control of the CD2 locus control region. Co-precipitation analysis of transgenic thymus revealed high levels of Cbfa1 protein in an abundant complex containing the binding cofactor Cbfb. CD2-Cbfa1-G1 mice displayed abnormal T-cell development, with a pronounced skew towards CD8 SP cells in the thymus and developed a low incidence of spontaneous lymphomas (6% at 12 months) with cells of similar phenotype. Strongly synergistic tumour development was seen when CD2-Cbfa1-G1 mice were crossed with lines carrying myc transgenes (CD2-myc or tamoxifen-regulatable CD2-mycERTM) and Cbfa1 was found to rescue expression of the CD2-myc transgene in preleukaemic mice. However, synergy did not appear to be due to a dominant block of myc-induced apoptosis by Cbfa1 as explanted primary tumours and cell lines from CD2-Cbfa1-G1/CD2-mycERTM mice showed accelerated death on induction with tamoxifen at similar rates to CD2-mycERTM controls. Moreover, thymocytes from preleukaemic CD2-Cbfa1-G1 mice showed reduced survival in vitro and increased sensitivity to the inhibitory effects of TGF-β. This study demonstrates that a full-length Cbf α-chain gene can act as an oncogene without fusion to a heterologous protein.
Blood Cells Molecules and Diseases | 2010
Karen Blyth; François Vaillant; Alma Jenkins; Laura McDonald; Marie Anne Pringle; Camille Huser; Torsten Stein; James C. Neil; Ewan R. Cameron
The Runx transcription factors are essential for mammalian development, most notably in the haematopoietic and osteogenic lineages. Runx1 and its binding partner, CBFbeta, are frequently targeted in acute leukaemia but evidence is accumulating that all three Runx genes may have a role to play in a wider range of cancers, either as tumour promoters or tumour suppressors. Whilst Runx2 is renowned for its role as a master regulator of bone development we discuss here its expression pattern and putative functions beyond this lineage. Furthermore, we review the evidence that RUNX2 promotes neoplastic development in haematopoietic lineages and in advanced mammary and prostate cancer.
Journal of Immunology | 2002
François Vaillant; Karen Blyth; Linda Andrew; James C. Neil; Ewan R. Cameron
The development of T cells in the thymus is regulated by a series of stage-specific transcription factors. Deregulated expression of these factors can lead to alterations in thymocyte development with the production of aberrant cell subsets and predispose to tumor formation. The three genes of the Runx family are multilineage regulators of differentiation that have been reported to be expressed in the T cell lineage. However, their roles in thymocyte development and T cell function are largely unknown. While the Runx2/Cbfa1/AML3/Pebp2αa gene plays a primary role in osteogenesis and regulates a number of key bone regulatory genes, we show here that Runx2 is also expressed during the earliest phase of thymic development, in the double-negative subset. Furthermore, enforced expression of Runx2 in transgenic mice under the CD2 promoter was found to affect T cell development at a stage coincident with β-selection, resulting in an expansion of double-negative CD4 and CD8 immature single-positive cells. Unlike wild-type controls this preselection population (CD4−CD8+heat-stable Ag+TCR−) is in a nonproliferative state, but appears to be primed for further transformation events. Overall the data suggest that Runx2 accelerates development to the CD8 immature single-positive stage, but retards subsequent differentiation to the double-positive stage. Thus, Runx2 joins a small group of transcription factors that can interfere with early T cell development, cause an expansion of a specific subset, and predispose to lymphoma.
Blood Cells Molecules and Diseases | 2003
Ewan R. Cameron; Karen Blyth; Linda Hanlon; Anna Kilbey; Nancy Mackay; Monica Stewart; Anne Terry; François Vaillant; Sandy Wotton; James C. Neil
We have shown previously that Runx2 is a frequent target (approximately equal to 30%) for proviral insertion in murine leukemia virus (MLV) induced T cell tumors in CD2-MYC transgenic mice. Further investigation of a large panel of these tumors revealed that a small number also contain insertions at either Runx3 or Runx1. None of the tumors contained insertions at more than one family member, but in each case proviral insertion was associated with a high level of expression from the upstream (P1) promoter of the respective target gene. Moreover, we confirmed that transcriptional activation of Runx1 does not affect the integrity of the coding sequence, as previously observed for Runx2. These observations suggest that the three Runx genes act as functionally redundant oncogenes in T-cell lymphoma development. To explore the oncogenic potential of Runx2 further we created transgenic mice that over-express this gene in the T cell compartment. These CD2-Runx2 animals show a preneoplastic enlargement of the CD8 immature single positive (ISP) thymocyte pool and develop lymphomas at a low incidence. Although the CD8 ISP population is greatly increased, unlike their wild type counterparts these cells are largely non-cycling. Co-expression of c-MYC in this lineage accentuates the CD8 ISP skew and induces rapid tumor development, confirming the potent synergy that exists between these two oncogenes. Experiments designed to understand the nature of the observed synergy are ongoing and are based on the hypothesis that Runx2 may exert a survival effect in c-MYC expressing tumors in vivo while c-MYC may rescue cells from the antiproliferative effects of Runx2. The oncogenic potential of Runx1 is also being assessed using primary murine embryonic fibroblasts (MEFs). These studies have revealed that while Runx1 exerts a growth suppressive effect in wild type cells a growth promoting effect is seen in the absence of p53, suggesting that the Runx genes may harbor latent oncogene-like properties.
Journal of Virology | 2002
Monica Stewart; Nancy Mackay; Ewan R. Cameron; James C. Neil
ABSTRACT The Dsi1 locus was identified as a common integration site for Moloney murine leukemia virus (MLV) in rat thymic lymphomas, but previous efforts to identify a gene affected by these insertions were unsuccessful. We considered the Runx3 gene a potential candidate on the basis of genetic mapping which showed that Dsi1 and Runx3 are closely linked on mouse chromosome 4 and the precedent of the related Runx2 gene, which emerged recently as a Myc-collaborating gene activated by retroviral insertion in thymic lymphomas of CD2-MYC mice. We now report the physical mapping of the Dsi1 locus to a site 30 kb upstream of the distal (P1) promoter of the murine Runx3 gene. Comparison with the syntenic region of human chromosome 1 shows that the next gene is over 250 kb 5′ to Runx3, suggesting that Runx3 may be the primary target of retroviral insertions at Dsi1. Screening of CD2-MYC lymphomas for rearrangements at Dsi1 revealed a tumor cell line harboring an MLV provirus at this locus, in the orientation opposite that of Runx3. Proviral insertion was associated with very high levels of expression of Runx3, with a preponderance of transcripts arising at the P1 promoter. These results confirm that Runx3 is a target of retroviral insertions at Dsi1 and indicate that Runx3 can act as an alternative to Runx2 as a Myc-collaborating gene in thymic lymphoma.