Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret Bell is active.

Publication


Featured researches published by Margaret Bell.


Oncogene | 2001

Runx2 : A novel oncogenic effector revealed by in vivo complementation and retroviral tagging

Karen Blyth; Anne Terry; Nancy Mackay; François Vaillant; Margaret Bell; Ewan R. Cameron; James C. Neil; Monica Stewart

The Runx2 (Cbfa1, Pebp2αA, Aml3) gene was previously identified as a frequent target for transcriptional activation by proviral insertion in T-cell lymphomas of CD2-MYC transgenic mice. We have recently shown that over-expression of the full-length, most highly expressed Runx2 isoform in the thymus perturbs T-cell development, leads to development of spontaneous lymphomas at low frequency and is strongly synergistic with Myc. To gain further insight into the relationship of Runx2 to other lymphomagenic pathways, we tested the effect of combining the CD2-Runx2 transgene either with a Pim1 transgene (Eμ-Pim1) or with the p53 null genotype, as each of these displays independent synergy with Myc. In both cases we observed synergistic tumour development. However, Runx2 appeared to have a dominant effect on the tumour phenotype in each case, with most tumours conforming to the CD3+, CD8+, CD4+/− phenotype seen in CD2-Runx2 mice. Neonatal infection of CD2-Runx2 mice with Moloney murine leukaemia virus (Moloney MLV) also led to a dramatic acceleration of tumour onset. Analysis of known Moloney MLV target genes in these lymphomas showed a high frequency of rearrangement at c-Myc or N-Myc (82%), and a significant number at Pim1 or Pim2 (23%), and at Pal1/Gfi1 (18%). These results indicate that Runx2 makes a distinct contribution to T-cell lymphoma development which does not coincide with any of the oncogene complementation groups previously identified by retroviral tagging.


Oncogene | 1999

A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc.

François Vaillant; Karen Blyth; Anne Terry; Margaret Bell; Ewan R. Cameron; James C. Neil; Monica Stewart

The Cbfa1/PEBP2αA/AML3 gene plays an essential role in osteogenesis but is also expressed in the T-cell lineage where it has been implicated in lymphoma development as a target for retroviral insertional mutagenesis. As lymphoma cells with til-1 insertion express at least five distinct Cbfa1 isoforms, it is important to establish which, if any, have intrinsic oncogenic potential. We have generated transgenic mice in which the most abundant lymphoma isoform (G1/p57) is expressed under the control of the CD2 locus control region. Co-precipitation analysis of transgenic thymus revealed high levels of Cbfa1 protein in an abundant complex containing the binding cofactor Cbfb. CD2-Cbfa1-G1 mice displayed abnormal T-cell development, with a pronounced skew towards CD8 SP cells in the thymus and developed a low incidence of spontaneous lymphomas (6% at 12 months) with cells of similar phenotype. Strongly synergistic tumour development was seen when CD2-Cbfa1-G1 mice were crossed with lines carrying myc transgenes (CD2-myc or tamoxifen-regulatable CD2-mycERTM) and Cbfa1 was found to rescue expression of the CD2-myc transgene in preleukaemic mice. However, synergy did not appear to be due to a dominant block of myc-induced apoptosis by Cbfa1 as explanted primary tumours and cell lines from CD2-Cbfa1-G1/CD2-mycERTM mice showed accelerated death on induction with tamoxifen at similar rates to CD2-mycERTM controls. Moreover, thymocytes from preleukaemic CD2-Cbfa1-G1 mice showed reduced survival in vitro and increased sensitivity to the inhibitory effects of TGF-β. This study demonstrates that a full-length Cbf α-chain gene can act as an oncogene without fusion to a heterologous protein.


Blood Cells Molecules and Diseases | 2009

Runx1 promotes B-cell survival and lymphoma development.

Karen Blyth; Nicholas J. Slater; Linda Hanlon; Margaret Bell; Nancy Mackay; Monica Stewart; James C. Neil; Ewan R. Cameron

Runx1 is essential for the homeostatic control of normal hematopoiesis and is required for lymphoid development. Translocations or point mutations that result in RUNX1 loss or disrupted function predispose to leukemia but data derived from model systems suggests that Runx genes can also be pro-oncogenic. Here we investigate the effects of enforced Runx1 expression in lymphoid lineages both in vivo and in vitro and show that transgene expression enhanced cell survival in the thymus and bone marrow but strongly inhibited the expansion of hematopoietic and B cell progenitors in vitro. Despite this, modestly enhanced levels of Runx1 accelerated Myc-induced lymphomagenesis in both the B cell and T cell lineages. Together these data provide formal proof that wild type Runx1 can promote oncogenesis in lymphoid tissues and that, in addition to loss of function, gain of function may have an aetiological role in leukemia.


Disease Models & Mechanisms | 2014

RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland

Laura McDonald; Nicola Ferrari; Anne Terry; Margaret Bell; Zahra M.A. Mohammed; Clare Orange; Alma Jenkins; William J. Muller; Barry A. Gusterson; James C. Neil; Joanne Edwards; Joanna Morris; Ewan R. Cameron; Karen Blyth

RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer.


Oncogene | 2000

Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycERTM mice

Karen Blyth; Monica Stewart; Margaret Bell; Clarwyn James; Gerard I. Evan; James C. Neil; Ewan R. Cameron

To study the effects of the Myc oncoprotein in a regulatable in vivo system, we generated lines of transgenic mice in which a tamoxifen inducible Myc fusion protein (c-mycERTM) is expressed under the control of the CD2 locus control region. Activation of the Myc oncoprotein resulted in both proliferation and apoptosis in vivo. Lines with a high transgene copy number developed spontaneous lymphomas at low frequency, but the tumour incidence was significantly increased with tamoxifen treatment. Surprisingly, we found that cellular sensitivity to Myc-induced apoptosis was retained in tumours from these mice and in most lymphoma cell lines, even when null for p53. Resistance to Myc-induced apoptosis could be conferred on these cells by co-expression of Bcl-2. However, acquired resistance is clearly not an obligatory progression event as sensitivity to apoptosis was retained in transplanted tumours in athymic mice. In conclusion, lymphomas arising in CD2-mycERTM mice retain the capacity to undergo apoptosis in response to Myc activation and show no phenotypic evidence of the presence of an active dominant inhibitor.


Cancer Research | 2007

Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts

Anna Kilbey; Karen Blyth; Sandy Wotton; Anne Terry; Alma Jenkins; Margaret Bell; Linda Hanlon; Ewan R. Cameron; James C. Neil

The Runx genes play paradoxical roles in cancer where they can function either as dominant oncogenes or tumor suppressors according to context. We now show that the ability to induce premature senescence in primary murine embryonic fibroblasts (MEF) is a common feature of all three Runx genes. However, ectopic Runx-induced senescence contrasts with Ras oncogene-induced senescence, as it occurs directly and lacks the hallmarks of proliferative stress. Moreover, a fundamental role for Runx function in the senescence program is indicated by the effects of Runx2 disruption, which renders MEFs prone to spontaneous immortalization and confers an early growth advantage that is resistant to stress-induced growth arrest. Runx2(-/-) cells are refractory to H-Ras(V12)-induced premature senescence, despite the activation of a cascade of growth inhibitors and senescence markers, and are permissive for oncogenic transformation. The aberrant behavior of Runx2(-/-) cells is associated with signaling defects and elevated expression of S-G(2)-M cyclins and their associated cyclin dependent kinase activities that may override the effects of growth inhibitory signals. Coupling of stress responses to the cell cycle represents a novel facet of Runx tumor suppressor function and provides a rationale for the lineage-specific effects of loss of Runx function in cancer.


Molecular Therapy | 2009

A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity.

Linda Scobie; Ralph D. Hector; Louise Grant; Margaret Bell; Anne A Nielsen; Sharon Meikle; Adrain Philbey; Adrain J Thrasher; Ewan R. Cameron; Karen Blyth; James C. Neil

The emergence of leukemia following gene transfer to restore common cytokine receptor γ chain (γC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human γC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after γ-retrovirus infection. The human CD2-γC transgene rescued T and B-cell development in γC-/- mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that γC-/- mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the γC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of γC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.The emergence of leukemia following gene transfer to restore common cytokine receptor gamma chain (gammaC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human gammaC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after gamma-retrovirus infection. The human CD2-gammaC transgene rescued T and B-cell development in gammaC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that gammaC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the gammaC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of gammaC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.


Cell Death & Differentiation | 2000

Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene.

Ewan R. Cameron; Morton J; Johnston Cj; Irvine J; Margaret Bell; David Onions; James C. Neil; Campbell M; Karen Blyth

Depending on the cellular context, the Myc oncoprotein is capable of promoting cell proliferation or death by apoptosis. These observations suggest that apoptosis in response to deregulated gene expression may represent a natural brake to tumour development. The pathways by which Myc induces apoptosis are as yet poorly characterised although recent observations on rat fibroblasts over-expressing Myc have demonstrated a requirement for the Fas pathway. To investigate the role of Fas in Myc-induced lymphomagenesis we backcrossed CD2-myc mice onto an lpr background. Rates of tumour development and phenotypic properties, including levels of apoptosis were indistinguishable from CD2-myc controls. Further, tumour cell lines derived from mice expressing a regulatable form of Myc showed inducible apoptosis at similar rates regardless of their lpr genotype. These results show that activation of c-myc and loss of Fas do not collaborate in T lymphoma development and that Myc-induced apoptosis in T-cells occurs by Fas-independent pathways.


PLOS Genetics | 2014

Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis.

Camille Huser; Kathryn L. Gilroy; Jeroen de Ridder; Anna Kilbey; Gillian Borland; Nancy Mackay; Alma Jenkins; Margaret Bell; Pawel Herzyk; Louise van der Weyden; David J. Adams; Alistair G. Rust; Ewan R. Cameron; James C. Neil

Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a ‘progression network’ that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.


Oncotarget | 2016

Addiction to Runx1 is partially attenuated by loss of p53 in the Eµ-Myc lymphoma model

Gillian Borland; Anna Kilbey; Jodie Hay; Kathryn L. Gilroy; Anne Terry; Nancy Mackay; Margaret Bell; Alma McDonald; Ken I. Mills; Ewan R. Cameron; James C. Neil

The Runx genes function as dominant oncogenes that collaborate potently with Myc or loss of p53 to induce lymphoma when over-expressed. Here we examined the requirement for basal Runx1 activity for tumor maintenance in the Eμ-Myc model of Burkitts lymphoma. While normal Runx1fl/fl lymphoid cells permit mono-allelic deletion, primary Eμ-Myc lymphomas showed selection for retention of both alleles and attempts to enforce deletion in vivo led to compensatory expansion of p53null blasts retaining Runx1. Surprisingly, Runx1 could be excised completely from established Eμ-Myc lymphoma cell lines in vitro without obvious effects on cell phenotype. Established lines lacked functional p53, and were sensitive to death induced by introduction of a temperature-sensitive p53 (Val135) allele. Transcriptome analysis of Runx1-deleted cells revealed a gene signature associated with lymphoid proliferation, survival and differentiation, and included strong de-repression of recombination-activating (Rag) genes, an observation that was mirrored in a panel of human acute leukemias where RUNX1 and RAG1,2 mRNA expression were negatively correlated. Notably, despite their continued growth and tumorigenic potential, Runx1null lymphoma cells displayed impaired proliferation and markedly increased sensitivity to DNA damage and dexamethasone-induced apoptosis, validating Runx1 function as a potential therapeutic target in Myc-driven lymphomas regardless of their p53 status.

Collaboration


Dive into the Margaret Bell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge