Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eyal Raz is active.

Publication


Featured researches published by Eyal Raz.


Science | 1996

Immunostimulatory DNA Sequences Necessary for Effective Intradermal Gene Immunization

Yukio Sato; Mark Roman; Helen Tighe; Delphine J. Lee; Maripat Corr; Minh Nguyen; Gregg J. Silverman; Martin Lotz; Dennis A. Carson; Eyal Raz

Vaccination with naked DNA elicits cellular and humoral immune responses that have a T helper cell type 1 bias. However, plasmid vectors expressing large amounts of gene product do not necessarily induce immune responses to the encoded antigens. Instead, the immunogenicity of plasmid DNA (pDNA) requires short immunostimulatory DNA sequences (ISS) that contain a CpG dinucleotide in a particular base context. Human monocytes transfected with pDNA or double-stranded oligonucleotides containing the ISS, but not those transfected with ISS-deficient pDNA or oligonucleotides, transcribed large amounts of interferon-α, interferon-β, and interleukin-12. Although ISS are necessary for gene vaccination, they down-regulate gene expression and thus may interfere with gene replacement therapy by inducing proinflammatory cytokines.


Nature | 2006

Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6

Hans Häcker; Vanessa Redecke; Blagoy Blagoev; Irina Kratchmarova; Li-Chung Hsu; Gang G. Wang; Mark P. Kamps; Eyal Raz; Hermann Wagner; Georg Häcker; Matthias Mann; Michael Karin

Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7

Jongdae Lee; Tsung-Hsien Chuang; Vanessa Redecke; Liping She; Paula M. Pitha; Dennis A. Carson; Eyal Raz; Howard B. Cottam

Certain C8-substituted and N7, C8-disubstituted guanine ribonucleosides comprise a class of small molecules with immunostimulatory activity. In a variety of animal models, these agents stimulate both humoral and cellular immune responses. The antiviral actions of these guanosine analogs have been attributed to their ability to induce type I IFNs. However, the molecular mechanisms by which the guanosine analogs potentiate immune responses are not known. Here, we report that several guanosine analogs activate Toll-like receptor 7 (TLR7). 7-Thia-8-oxoguanosine, 7-deazaguanosine, and related guanosine analogs activated mouse immune cells in a manner analogous to known TLR ligands, inducing cytokine production in mouse splenocytes (IL-6 and IL-12, type I and II IFNs), bone marrow-derived macrophages (IL-6 and IL-12), and in human peripheral blood leukocytes (type I IFNs, tumor necrosis factor α and IL-12). The guanosine congeners also up-regulated costimulatory molecules and MHC I/II in dendritic cells. Genetic complementation studies in human embryonic kidney 293 cells confirmed that the guanosine analogs activate cells exclusively via TLR7. The stimulation of TLR7 by the guanosine analogs in human cells appears to require endosomal maturation because inhibition of this process with chloroquine significantly reduced the downstream activation of NF-κB. However, TLR8 activation by R-848 and TLR2 activation by {S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-R-Cys-S-Ser-Lys4-OH, trihydrochloride)} were not inhibited by chloroquine, whereas TLR9 activation by CpG oligodeoxynucleotides was abolished. In summary, we present evidence that guanosine analogs activate immune cells via TLR7 by a pathway that requires endosomal maturation. Thus, the B cell-stimulating and antiviral activities of the guanosine analogs may be explained by their TLR7-activating capacity.


Nature Reviews Immunology | 2012

Immunomodulatory functions of type I interferons

José M. González-Navajas; Jongdae Lee; Michael David; Eyal Raz

Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.


Nature Cell Biology | 2006

Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells

Jongdae Lee; Ji-Hun Mo; Kyoko Katakura; Irit Alkalay; Adam N. Rucker; Yu-Tsueng Liu; Hyun-Ku Lee; Carol Shen; Gady Cojocaru; Steve Shenouda; Martin F. Kagnoff; Lars Eckmann; Yinon Ben-Neriah; Eyal Raz

The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-κB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IκBα degradation and activation of the NF-κB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IκB accumulates in the cytoplasm preventing NF-κB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-κB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.


Journal of Immunology | 2004

Cutting Edge: Activation of Toll-Like Receptor 2 Induces a Th2 Immune Response and Promotes Experimental Asthma

Vanessa Redecke; Hans Häcker; Sandip K. Datta; Agnes Fermin; Paula M. Pitha; David H. Broide; Eyal Raz

Recognition of microbial components by APCs and their activation through Toll-like receptors (TLR) leads to the induction of adaptive immune responses. In this study, we show that activation of TLR2 by its synthetic ligand Pam3Cys, in contrast to activation of TLR9 by immunostimulatory DNA (ISS-ODN), induces a prominent Th2-biased immune response. Activation of APCs by Pam3Cys resulted in the induction of Th2-associated effector molecules like IL-13, and IL-1β, GM-CSF and up-regulation of B7RP-1, but low levels of Th1-associated cytokines (IL-12, IFNα, IL-18, IL-27). Accordingly, TLR2 ligands aggravated experimental asthma. These data indicate that the type of TLR stimulation during the initial phase of immune activation determines the polarization of the adaptive immune response and may play a role in the initiation of Th2-mediated immune disorders, such as asthma.


Immunology Today | 1998

Gene vaccination: plasmid DNA is more than just a blueprint

Helen Tighe; Maripat Corr; Mark Roman; Eyal Raz

Abstract Despite the popularity of using plasmid DNA for vaccination, it is only recently that the basic mechanisms that drive the immune response to the encoded antigen have begun to unfold. Here, Helen Tighe and colleagues outline the characteristics of the immune response induced by gene vaccination and describe the multifaceted properties of DNA in initiating and determining the process.


Journal of Clinical Investigation | 2005

Toll-like receptor 9–induced type I IFN protects mice from experimental colitis

Kyoko Katakura; Jongdae Lee; Daniel Rachmilewitz; Gloria C. Li; Lars Eckmann; Eyal Raz

Experimental colitis is mediated by inflammatory or dysregulated immune responses to microbial factors of the gastrointestinal tract. In this study we observed that administration of Toll-like receptor 9 (TLR9) agonists suppressed the severity of experimental colitis in RAG1-/- but not in SCID mice. This differential responsiveness between phenotypically similar but genetically distinct animals was related to a partial blockade in TLR9 signaling and defective production of type I IFN (i.e., IFN-alpha/beta) in SCID mice upon TLR9 stimulation. The addition of neutralization antibodies against type I IFN abolished the antiinflammatory effects induced by TLR9 agonists, whereas the administration of recombinant IFN-beta mimicked the antiinflammatory effects induced by TLR9 agonists in this model. Furthermore, mice deficient in the IFN-alpha/beta receptor exhibited more severe colitis than wild-type mice did upon induction of experimental colitis. These results indicate that TLR9-triggered type I IFN has antiinflammatory functions in colitis. They also underscore the important protective role of type I IFN in intestinal homeostasis and suggest that strategies to modulate innate immunity may be of therapeutic value for the treatment of intestinal inflammatory conditions.


Journal of Clinical Investigation | 2004

Inhibition of experimental asthma by indoleamine 2,3-dioxygenase

Tomoko Hayashi; Lucinda Beck; Cyprian C. Rossetto; Xing Gong; Osamu Takikawa; Kenji Takabayashi; David H. Broide; Dennis A. Carson; Eyal Raz

Epidemiological evidence points to the inverse relationship between microbial exposure and the prevalence of allergic asthma and autoimmune diseases in Westernized countries. The molecular basis for this observation has not yet been completely delineated. Here we report that the administration of certain toll-like receptor (TLR) ligands, via the activation of innate immunity, induces high levels of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of tryptophan catabolism in various organs. TLR9 ligand-induced pulmonary IDO activity inhibits Th2-driven experimental asthma. IDO activity expressed by resident lung cells rather than by pulmonary DCs suppressed lung inflammation and airway hyperreactivity. Our results provide a mechanistic insight into the various formulations of the hygiene hypothesis and underscore the notion that activation of innate immunity can inhibit adaptive Th cell responses.


Journal of Immunology | 2003

A Subset of Toll-Like Receptor Ligands Induces Cross-presentation by Bone Marrow-Derived Dendritic Cells

Sandip K. Datta; Vanessa Redecke; Kiley R. Prilliman; Kenji Takabayashi; Maripat Corr; Thomas C. Tallant; Joseph A. DiDonato; Roman Dziarski; Shizuo Akira; Stephen P. Schoenberger; Eyal Raz

Dendritic cells (DCs) are capable of cross-presenting exogenous Ag to CD8+ CTLs. Detection of microbial products by Toll-like receptors (TLRs) leads to activation of DCs and subsequent orchestration of an adaptive immune response. We hypothesized that microbial TLR ligands could activate DCs to cross-present Ag to CTLs. Using DCs and CTLs in an in vitro cross-presentation system, we show that a subset of microbial TLR ligands, namely ligands of TLR3 (poly(inosinic-cytidylic) acid) and TLR9 (immunostimulatory CpG DNA), induces cross-presentation. In contrast to presentation of Ag to CD4+ T cells by immature DCs, TLR-induced cross-presentation is mediated by mature DCs, is independent of endosomal acidification, and relies on cytosolic Ag processing machinery.

Collaboration


Dive into the Eyal Raz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Roman

University of California

View shared research outputs
Top Co-Authors

Avatar

Jongdae Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maripat Corr

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Hayashi

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge