Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ezequias P. Siqueira is active.

Publication


Featured researches published by Ezequias P. Siqueira.


Pharmaceutical Biology | 2010

Antifungal activity of extracts of some plants used in Brazilian traditional medicine against the pathogenic fungus Paracoccidioides brasiliensis

Susana Johann; Patrícia Silva Cisalpino; Gisele Almeida Watanabe; Betania Barros Cota; Ezequias P. Siqueira; Moacir Geraldo Pizzolatti; Carlos L. Zani; Maria Aparecida de Resende

Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by Paracoccidioides brasiliensis Almeida (Onygenales) that requires 1–2 years of treatment. In the absence of drug therapy, the disease is usually fatal, highlighting the need for the identification of safer, novel, and more effective antifungal compounds. With this need in mind, several plants employed in Brazilian traditional medicine were assayed on P. brasiliensis and murine macrophages. Extracts were prepared from 10 plant species: Inga spp. Mill. (Leguminosae), Schinus terebinthifolius Raddi (Anacardiaceae), Punica granatum L. (Punicaceae), Alternanthera brasiliana Kuntze (Amaranthaceae), Piper regnellii CDC. (Piperaceae), P. abutiloides Kunth (Piperaceae), Herissantia crispa L. Briz. (Malvaceae), Rubus urticaefolius Poir (Rosaceae), Rumex acetosa L. (Polygonaceae), and Baccharis dracunculifolia DC. (Asteraceae). Hexane fractions from hydroalcoholic extracts of Piper regnellii and Baccharis dracunculifolia were the most active against the fungus, displaying minimum inhibitory concentration (MIC) values of 7.8 μg/mL and 7.8–30 μg/mL, respectively. Additionally, neither of the extracts exhibited any apparent cytotoxic effects on murine macrophages at 20 μg/mL. Analyses of these fractions using gas chromatography-mass spectrometry (GC-MS) showed that the major components of B. dracunculifolia were ethyl hydrocinnamate (14.35%) and spathulenol (16.02%), while the major components of the hexane fraction of Piper regnellii were 1-methoxy-4-(1-propenyl) benzene (21.94%) and apiol (21.29%). The activities of these fractions against P. brasiliensis without evidence of cytotoxicity to macrophages justify their investigation as a potential source of new chemical agents for the treatment of PCM.


Bioresource Technology | 2014

Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production.

Jandora Severo Poli; Mirra Angelina Neres da Silva; Ezequias P. Siqueira; Vânya Márcia Duarte Pasa; Carlos A. Rosa; Patricia Valente

This study aimed to evaluate the effect of medium composition and culture conditions on lipid content, fatty acid profile and biomass production by the yeast Yarrowia lipolytica QU21. Lipid production by the yeast growing on glycerol/(NH4)2SO4 (10%/0.1%) reached 1.48g/L (30.1% according to total cell dry weight). When glycerol was replaced by crude glycerol (industrial waste), the lipid yield was 1.27g/L, with no significant difference. Some particular fatty acids were found when crude glycerol was combined with fresh yeast extract (FYE, brewery waste), as linolenic acid (C18:3n3), eicosadienoic acid (C20:2), eicosatrienoic acid (C20:3n3) and eicosapentaenoic acid (C20:5n3). In addition, the FYE promoted an increase of more than 300% on polyunsaturated fatty acid content (PUFA), which is an undesirable feature for biodiesel production. The fatty acid composition of the oil produced by Y. lipolytica QU21 growing on crude glycerol/(NH4)2SO4 presented a potential use as biodiesel feedstock, with low PUFA content.


Bioresource Technology | 2010

Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry.

Andrea de Souza Monteiro; M.R.Q. Bonfim; Vitor Souza Domingues; A. Corrêa; Ezequias P. Siqueira; C.L. Zani; Vera Lúcia dos Santos

New bioemulsifier-producing yeasts were isolated from the biological wastewater treatment plant of a dairy industry. Of the 31 bioemulsifier-producing strains, 12 showed emulsifying activity after 2months of incubation, with E(24) values ranging from 7% to 78%. However, only Trichosporon loubieri CLV20, Geotrichum sp. CLOA40, and T. montevideense CLOA70 exhibited high emulsion-stabilizing capacity, with E(24) values of 78%, 67%, and 66%, respectively. These isolates were shown to induce a strong emulsion stabilizing activity rather than the reduction of the interfacial tension. These strains exhibited similar growth rates in the exponential growth phase, with a clear acceleration after 24h and stabilization of the activity after 144h. Emulsification and stability properties of the bioemulsifiers were compared to those of commercial surfactants after the addition of NaCl and exposure to temperature of 100 degrees C. The compounds produced by the isolates appeared to be lipid-polysaccharide complexes. Gas chromatograph analysis of the lipidic fraction of the bioemulsifiers from CLV20, CLOA40, and CLOA70 shows the prevalence of (9Z,12Z)-octadeca-9,12-dienoic acid, in concentrations of 42.8%, 25.9%, and 49.8%, respectively. The carbohydrate composition, as determined by GC-MS of their alditol acetate derivatives, showed a predominance of mannose, galactose, xylose and arabinose.


Bioresource Technology | 2013

Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil

J.O.P.A. Coutinho; M.P.S. Silva; P.M. Moraes; Andrea de Souza Monteiro; J.C.C. Barcelos; Ezequias P. Siqueira; Vera Lúcia dos Santos

A strain of Pseudomonas aeruginosa isolated from a site contaminated with refined oil products exhibited demulsification capabilities against Tween 80-Span 80 stabilized oil-in-water (O/W), Tween 80-stabilized water-in-oil (W/O) model emulsions (kerosene-water), and an industrial emulsion (Daido Dairoll PA-5A). GC-MS analysis confirmed the presence of fatty acids and carbohydrates in the extracellular biodemulsifier. The demulsifying activity of cells and culture supernatants was favored by growth in media containing 1% diesel oil. There was a correlation between culture age, de-emulsification and cellular hydrophobicity, and highest activities were observed for cells and supernatants from 96-h cultures. Activity increased with addition of up to 60 mg cells or 300 μL supernatant to emulsions. The activity was relatively stable at 20-40 °C and to freezing, but was reduced by 69% by washing the cells with chloroform-methanol-water. This demulsifier has potential for application in biotreatment of emulsified oily wastewaters to promote recovery and/or degradation of oil.


Journal of Basic Microbiology | 2009

Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents.

Andrea de Souza Monteiro; Joana O. P. A. Coutinho; Ary Corrêa Junior; Carlos A. Rosa; Ezequias P. Siqueira; Vera Lúcia dos Santos

The yeast strain CLOA 72 isolated from the effluent of a dairy industry in Brazil and identified as Trichosporon montevideense, was able to grow and produce a glycolipid biosurfactant when cultured on a mineral medium (MM) with sunflower oil as the carbon source. Biosurfactant production was partially growth‐associated and maximal emulsification activity was observed at 144 h of cultivation (78.92%). The biosurfactant purified by precipitation with ethanol showed 78.66% emulsifying activity when used in concentrations above 4.5 mg/ml and was able to reduce the surface tension of water to values below 44.9 mN/m. The critical micellar concentration (CMC) was found to be 2.2 mg/ml. The highest emulsifying activity (E24) has been observed with vegetable oils, toluene, kerosene, isooctane, cyclohexane, hexane, diesel oil and hexadecane as compared to mineral oil and oleic acid. The biosurfactant also showed good stability during exposure to 100 °C for different periods of time (10 to 60 min), to high salinity (30% of NaCl, KCl and NaHCO3), and to a wide range of pH values (1–10). The biosurfactant purified by gel filtration chromatography is a glycolipid, with lipid portion containing 16.03% (9Z)‐octadec‐9‐enoic acid, 14.92% hexadecanoic acid, and 9.63% (E) octadec‐9‐enoic acid and the carbohydrate portion containing mannose (35.29%), xylose (41.99%), arabinose (17.47%), and glucose (5.25%). (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Medical Mycology | 2012

Activity of compounds isolated from Baccharis dracunculifolia D.C. (Asteraceae) against Paracoccidioides brasiliensis

Susana Johann; Flávia Beraldo Oliveira; Ezequias P. Siqueira; Patrícia Silva Cisalpino; Carlos A. Rosa; Tânia M. A. Alves; Carlos L. Zani; Betania Barros Cota

Paracoccidioidomycosis is a prevalent systemic mycosis in Latin America which requires prolonged treatment with highly toxic antifungals. Baccharis dracunculifolia is a medicinal plant in Brazil that is a candidate in the search for new drugs. Fractions of the hexanic extracts were obtained using chromatographic procedures and assessed using an antifungal assay with Paracoccidioides brasiliensis (Pb18), tumor cell lines and amastigote forms of Leishmania, L. amazonensis. Four compounds were isolated, i.e., ursolic acid (1), methyl linolenate (2), caryophyllene oxide (3), and trans-nerolidol (4). Compounds 2, 3 and 4 displayed antifungal activity against four isolates of Paracocci dioides with MIC values ranging from 3.9-250 μg/ml. Only caryophyllene oxide showed differences in the MIC values against Pb18 when the medium was supplemented with ergosterol, which suggested that the compound interacts with ergosterol. Ursolic acid was active in the cytotoxic assays and showed leishmanicidal activity. Scanning electron microscopy demonstrated that compounds 2, 3 and 4 decreased the cell size and produced an irregular cell wall surface on P. brasiliensis cells. The present results showed the biological activities of the isolated compounds and revealed that these compounds may affect the cell surface and growth of P. brasiliensis isolates.


Biotechnology for Biofuels | 2012

Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2

Andrea de Souza Monteiro; Vitor Souza Domingues; Marcus Vd Souza; Ivana Lula; Daniel Bonoto Gonçalves; Ezequias P. Siqueira; Vera Lúcia dos Santos

BackgroundThe microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes.ResultsTrichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated from effluents of the dairy industry, with ability to emulsify different hydrophobic substrates. Bioemulsifier production (mg/L) and the emulsifying activity (E24) of this strain were optimized by response surface methodology using mineral minimal medium containing refinery waste as the carbon source, which consisted of diatomaceous earth impregnated with esters from filters used in biodiesel purification. The highest bioemulsifier production occurred in mineral minimal medium containing 75 g/L biodiesel residue and 5 g/L ammonium sulfate. The highest emulsifying activity was obtained in medium containing 58 g/L biodiesel refinery residue and 4.6 g/L ammonium sulfate, and under these conditions, the model estimated an emulsifying activity of 85%. Gas chromatography and mass spectrometry analysis suggested a bioemulsifier molecule consisting of monosaccharides, predominantly xylose and mannose, and a long chain aliphatic groups composed of octadecanoic acid and hexadecanoic acid at concentrations of 48.01% and 43.16%, respectively. The carbohydrate composition as determined by GC-MS of their alditol acetate derivatives showed a larger ratio of xylose (49.27%), mannose (39.91%), and glucose (10.81%). 1 H NMR spectra confirmed by COSY suggested high molecular weight, polymeric pattern, presence of monosaccharide’s and long chain aliphatic groups in the bioemulsifier molecule.ConclusionsThe biodiesel residue is an economical substrate, therefore seems to be very promising for the low-cost production of active emulsifiers in the emulsification of aromatics, aliphatic hydrocarbons, and kerosene.


Fitoterapia | 2011

New cassane diterpenes from Caesalpinia echinata.

Betania Barros Cota; Djalma M. de Oliveira; Ezequias P. Siqueira; Elaine M. Souza-Fagundes; Adriano M.C. Pimenta; D. M. dos Santos; Ana Rabello; Carlos L. Zani

An investigation of the ethanolic extract from stems of Caesalpinia echinata Lam (Leguminosae-Caesalpinioideae) led to the isolation of five new cassane diterpenes along with known lambertianic acid. Their structures were determined based on spectroscopic methods. A preliminary study on leishmanicidal activity demonstrated that compounds 1, 2 and 6 were found to inhibit the growth of amastigote-like forms of Leishmania amazonensis without affecting mononuclear cells obtained from human peripheral blood.


Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy | 2013

Flavonoids from leaves of Mauritia flexuosa

Djalma M. de Oliveira; Ezequias P. Siqueira; Yule R.F. Nunes; Betania Barros Cota

The chromatographic fractionation of the Mauritia flexuosa L. f., Arecaceae, leaves extract, a plant known by the name of buriti palm tree, resulted in the isolation of six flavonoids: tricin-7-O-rutinoside, apigenin-6-C-arabinoside, 8-C-glucoside (isoschaftoside), kaempferol-3-O-rutinoside (nicotii¬‚orine), quercetin-3-O-rutinoside (rutin), luteolin-8-C-glucoside (orientin) and luteolin-6-C-glucoside (isoorientin). The flavonoids were found out and previously reported as constituents of the Arecaceae family plants, but the occurrence of C-glucoside flavonoids, in the species being analyzed, is described for the first time on this study. The structural elucidations of all of the isolated compounds were performed by means of the comparison of their spectral data (1H and 13C NMR, UV and ESI-MS) with those ones of the literature.


Memorias Do Instituto Oswaldo Cruz | 2015

Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp.

Fernanda Fraga Campos; Policarpo Ademar Sales Junior; Alvaro José Romanha; Márcio Ss Araújo; Ezequias P. Siqueira; Jarbas M. Resende; Tânia Ma Alves; Olindo Assis Martins-Filho; Vera Lúcia dos Santos; Carlos A. Rosa; Carlos L. Zani; Betania Barros Cota

Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL), Candida albicans and Candida tropicalis (MIC 64-128 μg/mL). Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM) in a T. cruzi cellular culture assay.

Collaboration


Dive into the Ezequias P. Siqueira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Johann

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Vera Lúcia dos Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Andrea de Souza Monteiro

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Rosa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Djalma M. de Oliveira

Southwest Bahia State University

View shared research outputs
Top Co-Authors

Avatar

Elaine M. Souza-Fagundes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Patrícia Silva Cisalpino

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge