Ezhan Karasan
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ezhan Karasan.
global communications conference | 1996
Ezhan Karasan; Ender Ayanoglu
We propose two k shortest path algorithms for selecting the route-wavelength pair in WDM networks with and without wavelength converters with orders of magnitude larger conversion gains as compared to conventional routing. We state a conclusion on the use of wavelength converters in long-distance networks.
IEEE Journal on Selected Areas in Communications | 1998
Ezhan Karasan; Ender Ayanoglu
Wavelength division multiplexed point-to-point transport is becoming commonplace in wide area networks. With the expectation that the next step is end-to-end networking of wavelengths (in the optical domain without conversion to electronics), there is a need for new design techniques, a new understanding of the performance issues, and a new performance evaluation methodology in such networks. This paper describes approaches to that end, summarizes research results, and points to open problems.
IEEE Journal on Selected Areas in Communications | 1998
Lih Y. Lin; Ezhan Karasan; Robert W. Tkach
We propose and analyze layered switch architectures that possess high design flexibility, greatly reduced switch size, and high expandability. The improvement in loss and crosstalk due to the reduced switch size is also discussed. Theoretical models have been developed to compute the network blocking probability using these architectures. Low blocking probability and high network utilization are achieved because of the capability of communication between layers in adjacent switches. The results show that the proposed layered switch architectures are very attractive for high-capacity optical transport networks.
IEEE Journal on Selected Areas in Communications | 2006
Nail Akar; Ezhan Karasan; Kaan Dogan
In this paper, we study the blocking probabilities in a wavelength division multiplexing-based asynchronous bufferless optical packet/burst switch equipped with a bank of tuneable wavelength converters dedicated to each output fiber line. Wavelength converter sharing, also referred to as partial wavelength conversion, corresponds to the case of a number of converters shared amongst a larger number of wavelength channels. In this study, we present a probabilistic framework for exactly calculating the packet blocking probabilities for optical packet/burst switching systems utilizing wavelength converter sharing. In our model, packet arrivals at the optical switch are first assumed to be Poisson and later generalized to the more general Markovian arrival process to cope with very general traffic patterns whereas packet lengths are assumed to be exponentially distributed. As opposed to the existing literature based on approximations and/or simulations, we formulate the problem as one of finding the steady-state solution of a continuous-time Markov chain with a block tridiagonal infinitesimal generator. To find such solutions, we propose a numerically efficient and stable algorithm based on block tridiagonal LU factorizations. We show that exact blocking probabilities can be efficiently calculated even for very large systems and rare blocking probabilities, e.g., systems with 256 wavelengths per fiber and blocking probabilities in the order of 10-40. Relying on the stability and speed of the proposed algorithm, we also provide a means of provisioning wavelength channels and converters in optical packet/burst switching systems.
Photonic Network Communications | 2003
Emre Yetginer; Ezhan Karasan
In this paper, we study regenerator placement and traffic engineering of restorable paths in generalized multiprotocol label switching (GMPLS) networks. Regenerators are necessary in optical networks in order to cope with transmission impairments. We study a network architecture where regenerators are placed only at selected nodes for decreasing cost of regeneration. We propose two heuristic algorithms for optimum placement of these regenerators. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, off-line computation of working and restoration paths is studied for traffic engineering with path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an integer linear programming (ILP) problem. A traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands resulting from traffic uncertainties that can be carried over the network. Proposed heuristic regenerator placement algorithms are also evaluated from a traffic engineering point of view.
IEEE Journal on Selected Areas in Communications | 1996
Joseph Y. Hui; Ezhan Karasan; Jun Li; Junbiao Zhang
We consider the use of large buffers and feedback as a mechanism to maintain loosely coupled synchronization between a multimedia server and a client. The multimedia stream is modeled as a fluid flow through rate controlled valves and buffers with multiple thresholds. These thresholds are used to control the rates upstream. The quality of service for the multimedia connection is characterized in terms of the jitter in the received media stream due to buffer underflow and overflow. This quality of service is used to exercise rate and admission control in the presence of congestion. The feedback mechanism is, implemented in GRAMS (gopher-style real time ATM multimedia system), an adaptive multimedia client-server system. Experimental statistics are gathered for the purpose of traffic engineering. We employ a fluid flow and first passage time analysis to understand the traffic process through the pipelines and the buffers and to estimate the amount of signaling required by the feedback mechanism.
IEEE Communications Surveys and Tutorials | 2010
Miray Kas; Burcu Yargicoglu; Ibrahim Korpeoglu; Ezhan Karasan
IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods.
Wireless Networks | 2010
Tarik Yardibi; Ezhan Karasan
One of the most important design objectives in wireless sensor networks (WSN) is minimizing the energy consumption since these networks are expected to operate in harsh conditions where the recharging of batteries is impractical, if not impossible. The sleep scheduling mechanism allows sensors to sleep intermittently in order to reduce energy consumption and extend network lifetime. In applications where 100% coverage of the network field is not crucial, allowing the coverage to drop below full coverage while keeping above a predetermined threshold, i.e., partial coverage, can further increase the network lifetime. In this paper, we develop the distributed adaptive sleep scheduling algorithm (DASSA) for WSNs with partial coverage. DASSA does not require location information of sensors while maintaining connectivity and satisfying a user defined coverage target. In DASSA, nodes use the residual energy levels and feedback from the sink for scheduling the activity of their neighbors. This feedback mechanism reduces the randomness in scheduling that would otherwise occur due to the absence of location information. The performance of DASSA is compared with an integer linear programming (ILP) based centralized sleep scheduling algorithm (CSSA), which is devised to find the maximum number of rounds the network can survive assuming that the location information of all sensors is available. DASSA is also compared with the decentralized DGT algorithm. DASSA attains network lifetimes up to 92% of the centralized solution and it achieves significantly longer lifetimes compared with the DGT algorithm.
broadband communications, networks and systems | 2004
Nail Akar; Ezhan Karasan
In this paper, we study the blocking probabilities in a wavelength division multiplexing-based asynchronous bufferless optical burst switch equipped with a bank of tuneable wavelength converters that is shared per output link. The site of this bank is generally chosen to be less than the number of wavelengths on the link because of the relatively high cost of wavelength converters using current technologies; this case is referred to as partial wavelength conversion in the literature. We present a probabilistic framework for exactly calculating the blocking probabilities. Burst durations are assumed to be exponentially distributed. Burst arrivals are first assumed to be Poisson and later generalized to the more general phase-type distribution. Unlike existing literature based on approximations and/or simulations, we formulate the problem as one of finding the steady-state solution of a continuous-time Markov chain with a block tridiagonal infinitesimal generator. We propose a numerically efficient and stable solution technique based on block tridiagonal LU factorizations. We show that blocking probabilities can exactly and efficiently be found even for very large systems and rare blocking probabilities. Based on the results of this solution technique, we also show how this analysis can be used for provisioning wavelength channels and converters.
international conference on computer communications | 1996
Hongbin Ji; Joseph Y. Hui; Ezhan Karasan
Broadband network are developed to carry a wide range of traffic which has different characteristics and grade-of-service (GoS) requirements. To meet these distinct requirements, we propose to decompose each network component into multiple sub-components. Each sub-component has a dedicated bandwidth and buffer, and it only carries traffic which has a similar GoS requirement. Thus it will reduce the interference from other types of traffic which has totally different GoS requirements. First, we develop a GoS-based pricing scheme which will entail the resources are efficiently utilized. The equilibrium stability is also studied. Then we address the problem of how to optimally allocate available resources among the sub-components. Resource expansion becomes necessary when the network is congested. Two kinds of routing schemes are proposed. One is least cost routing for GoS-insensitive traffic and the other is best GoS routing for GoS-sensitive traffic.