Ezio Musso
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ezio Musso.
Cell | 2003
Antonio Paolo Beltrami; Laura Barlucchi; Daniele Torella; Mathue Baker; Federica Limana; Stefano Chimenti; Hideko Kasahara; Marcello Rota; Ezio Musso; Konrad Urbanek; Annarosa Leri; Jan Kajstura; Bernardo Nadal-Ginard; Piero Anversa
The notion of the adult heart as terminally differentiated organ without self-renewal potential has been undermined by the existence of a subpopulation of replicating myocytes in normal and pathological states. The origin and significance of these cells has remained obscure for lack of a proper biological context. We report the existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells. They are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells. When injected into an ischemic heart, these cells or their clonal progeny reconstitute well-differentiated myocardium, formed by blood-carrying new vessels and myocytes with the characteristics of young cells, encompassing approximately 70% of the ventricle. Thus, the adult heart, like the brain, is mainly composed of terminally differentiated cells, but is not a terminally differentiated organ because it contains stem cells supporting its regeneration. The existence of these cells opens new opportunities for myocardial repair.
Circulation Research | 2005
Konrad Urbanek; Marcello Rota; Stefano Cascapera; Claudia Bearzi; Angelo Nascimbene; Antonella De Angelis; Toru Hosoda; Stefano Chimenti; Mathue Baker; Federica Limana; Daria Nurzynska; Daniele Torella; Francesco Rotatori; Raffaella Rastaldo; Ezio Musso; Federico Quaini; Annarosa Leri; Jan Kajstura; Piero Anversa
Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1 (IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1. HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles, capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at healing and long thereafter. The volume of regenerated myocytes was 2200 &mgr;m3 at 16 days after treatment and reached 5100 &mgr;m3 at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10 000 to 20 000 &mgr;m3. Moreover, there were 43±13 arterioles and 155±48 capillaries/mm2 myocardium at 16 days, and 31±6 arterioles and 390±56 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function.
Circulation Research | 2004
Daniele Torella; Marcello Rota; Daria Nurzynska; Ezio Musso; Alyssa Monsen; Isao Shiraishi; Elias Zias; Kenneth Walsh; Anthony Rosenzweig; Mark A. Sussman; Konrad Urbanek; Bernardo Nadal-Ginard; Jan Kajstura; Piero Anversa; Annarosa Leri
Abstract— To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.
Neuroscience & Biobehavioral Reviews | 1999
A Sgoifo; Jaap M. Koolhaas; de Sietse Boer; Ezio Musso; Donatella Stilli; Bauke Buwalda; Peter Meerlo
Animal models of social stress represent a useful experimental tool to investigate the relationship between psychological stress, autonomic neural activity and cardiovascular disease. This paper summarizes the results obtained in a series of experiments performed on rats and aimed at verifying whether social challenges produce specific modifications in the autonomic neural control of heart rate and whether these changes can be detrimental for cardiac electrical stability. Short-term electrocardiographic recordings were performed via radiotelemetry and the autonomic input to the heart evaluated by means of time-domain heart rate variability measures. Compared to other stress contexts, a social defeat experience produces a strong shift of autonomic balance toward sympathetic dominance, poorly antagonized by vagal rebound, and associated with the occurrence of cardiac tachyarrhythmias. These effects were particularly severe when a wild-type strain of rats was studied. The data also suggest that the cardiac autonomic responses produced by different types of social contexts (dominant-subordinate interaction, dominant-dominant confrontation, social defeat) are related to different degrees of emotional activation, which in turn are likely modulated by the social rank of the experimental animal and the opponent, the prior experience with the stressor, and the level of controllability over the stimulus.
Circulation Research | 2005
Marcello Rota; Alessandro Boni; Konrad Urbanek; Maria Elena Padin-Iruegas; Tymoteusz J Kajstura; Giuseppe Fiore; Hajime Kubo; Edmund H. Sonnenblick; Ezio Musso; Steve R. Houser; Annarosa Leri; Mark A. Sussman; Piero Anversa
Cytoplasmic overexpression of Akt in the heart results in a myopathy characterized by organ and myocyte hypertrophy. Conversely, nuclear-targeted Akt does not lead to cardiac hypertrophy, but the cellular basis of this distinct heart phenotype remains to be determined. Similarly, whether nuclear-targeted Akt affects ventricular performance and mechanics, calcium metabolism, and electrical properties of myocytes is unknown. Moreover, whether the expression and state of phosphorylation of regulatory proteins implicated in calcium cycling and myocyte contractility are altered in nuclear-targeted Akt has not been established. We report that nuclear overexpression of Akt does not modify cardiac size and shape but results in an increased number of cardiomyocytes, which are smaller in volume. Additionally, the heart possesses enhanced systolic and diastolic function, which is paralleled by increased myocyte performance. Myocyte shortening and velocity of shortening and relengthening are increased in transgenic mice and are coupled with a more efficient reuptake of calcium by the sarcoplasmic reticulum (SR). This process increases calcium loading of the SR during relengthening. The enhanced SR function appears to be mediated by an increase in SR Ca2+-ATPase2a activity sustained by a higher degree of phosphorylation of phospholamban. This posttranslational modification was associated with an increase in phospho–protein kinase A and a decrease in protein phosphatase-1. Together, these observations provide a plausible biochemical mechanism for the potentiation of myocyte and ventricular function in Akt transgenic mice. Therefore, nuclear-targeted Akt in myocytes may have important implications for the diseased heart.
Cardiovascular Research | 2011
Alessandra Rossini; Caterina Frati; Costanza Lagrasta; Gallia Graiani; Stefano Cavalli; Ezio Musso; Marco Baccarin; Marina Di Segni; Francesco Fagnoni; Antonia Germani; Eugenio Quaini; Manuel Mayr; Qingbo Xu; Andrea Barbuti; Dario DiFrancesco; Giulio Pompilio; Federico Quaini; Carlo Gaetano; Maurizio C. Capogrossi
AIMS Bone marrow mesenchymal stromal cell (BMStC) transplantation into the infarcted heart improves left ventricular function and cardiac remodelling. However, it has been suggested that tissue-specific cells may be better for cardiac repair than cells from other sources. The objective of the present work has been the comparison of in vitro and in vivo properties of adult human cardiac stromal cells (CStC) to those of syngeneic BMStC. METHODS AND RESULTS Although CStC and BMStC exhibited a similar immunophenotype, their gene, microRNA, and protein expression profiles were remarkably different. Biologically, CStC, compared with BMStC, were less competent in acquiring the adipogenic and osteogenic phenotype but more efficiently expressed cardiovascular markers. When injected into the heart, in rat a model of chronic myocardial infarction, CStC persisted longer within the tissue, migrated into the scar, and differentiated into adult cardiomyocytes better than BMStC. CONCLUSION Our findings demonstrate that although CStC and BMStC share a common stromal phenotype, CStC present cardiovascular-associated features and may represent an important cell source for more efficient cardiac repair.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Claudia Colussi; Jessica Rosati; Stefania Straino; Francesco Spallotta; Roberta Berni; Donatella Stilli; Stefano Rossi; Ezio Musso; Emilio Macchi; Antonello Mai; Gianluca Sbardella; Sabrina Castellano; Cristina Chimenti; Andrea Frustaci; Angela Nebbioso; Lucia Altucci; Maurizio C. Capogrossi; Carlo Gaetano
Wanting to explore the epigenetic basis of Duchenne cardiomyopathy, we found that global histone acetylase activity was abnormally elevated and the acetylase P300/CBP-associated factor (PCAF) coimmunoprecipitated with connexin 43 (Cx43), which was Nε-lysine acetylated and lateralized in mdx heart. This observation was paralleled by Cx43 dissociation from N-cadherin and zonula occludens 1, whereas pp60-c-Src association was unaltered. In vivo treatment of mdx with the pan-histone acetylase inhibitor anacardic acid significantly reduced Cx43 Nε-lysine acetylation and restored its association to GAP junctions (GJs) at intercalated discs. Noteworthy, in normal as well as mdx mice, the class IIa histone deacetylases 4 and 5 constitutively colocalized with Cx43 either at GJs or in the lateralized compartments. The class I histone deacetylase 3 was also part of the complex. Treatment of normal controls with the histone deacetylase pan-inhibitor suberoylanilide hydroxamic acid (MC1568) or the class IIa-selective inhibitor 3-{4-[3-(3-fluorophenyl)-3-oxo-1-propen-1-yl]-1-methyl-1H-pyrrol-2-yl}-N-hydroxy-2-propenamide (MC1568) determined Cx43 hyperacetylation, dissociation from GJs, and distribution along the long axis of ventricular cardiomyocytes. Consistently, the histone acetylase activator pentadecylidenemalonate 1b (SPV106) hyperacetylated cardiac proteins, including Cx43, which assumed a lateralized position that partly reproduced the dystrophic phenotype. In the presence of suberoylanilide hydroxamic acid, cell to cell permeability was significantly diminished, which is in agreement with a Cx43 close conformation in the consequence of hyperacetylation. Additional experiments, performed with Cx43 acetylation mutants, revealed, for the acetylated form of the molecule, a significant reduction in plasma membrane localization and a tendency to nuclear accumulation. These results suggest that Cx43 Nε-lysine acetylation may have physiopathological consequences for cell to cell coupling and cardiac function.
Physiology & Behavior | 1999
A Sgoifo; Jaap M. Koolhaas; Ezio Musso; Sietse F. de Boer
The acute consequences of a social aversive stimulus (defeat) on the autonomic control upon the electrical activity of the heart were measured and compared to those observed in three nonsocial stress paradigms, namely restraint, shock-probe test, and swimming. Electrocardiograms were recorded from rats via radiotelemetry, and the autonomic neural control of the heart was evaluated via measures of heart rate and heart rate variability, such as the average R-R interval (RR), the standard deviation of RR (SD), the coefficient of variance (SD/RR), and the root-mean-square of successive R-R interval differences (r-MSSD). Although all stressors induced significant reductions of average R-R interval, the effect of defeat was significantly larger (p < 0.05). The social stimulus also determined a significant decrease in the variability indexes (p < 0.01 for all), whereas in the other stress conditions they were either unchanged or increased (SD/RR during restraint, p < 0.05; SD and SD/RR during swimming, p < 0.05 and p < 0.01). Cardiac arrhythmias (mostly ventricular premature beats, VPBs) were far more frequent during defeat than during the other challenging situations (p < 0.01), with an average of 33.5 +/- 6.5 VPBs per 15-min test recording. These data suggest that during defeat autonomic control was shifted toward a sympathetic dominance, whereas in rats exposed to nonsocial stressors, although significant heart rate accelerations were also found, sympathovagal balance was substantially maintained. These differences in autonomic stress responsivity explain the different susceptibility to ventricular arrhythmias and indicate that a social challenge can be far more detrimental for cardiac electrical stability than other nonsocial aversive stimuli.
Neuroscience & Biobehavioral Reviews | 2003
Andrea Sgoifo; Francesca Braglia; Tania Costoli; Ezio Musso; Peter Meerlo; Graziano Ceresini; Alfonso Troisi
The degree of cardiovascular stress responsivity and its possible implications for the onset and progression of cardiovascular pathologies seem to be linked to the individual strategy of behavioral coping with stressors. This study was designed to investigate the relationship among cardiac autonomic, endocrine and behavioral responses to real-life stress episodes. Thirty university students were exposed to two brief social challenges (stress interviews), during which the state of sympathovagal balance (time-domain indexes of heart rate variability) and a number of non-verbal behaviors were quantified. Psychometric measurements were also obtained via SPRAS questionnaire, administered just after each stress interview. Samples of saliva were collected for cortisol determination immediately prior and after the experimental session. Subjects showing higher levels of sympathetic dominance were characterized by higher scores of submissive behavior, larger cortisol increments, and higher perception of psychophysiological arousal. A clear consistency in the individual response to the two stress interviews was found, at the behavioral, physiological and psychophysiological level. Finally, the gender of the subjects did not clearly influence their stress responsivity. These results support the hypothesis of a close relationship between the degree of physiological arousal and the style of behavioral adaptation to social stressors.
Circulation Research | 2007
Marcello Rota; Toru Hosoda; Antonella De Angelis; Michael L. Arcarese; Grazia Esposito; Roberto Rizzi; Jochen Tillmanns; Derin Tugal; Ezio Musso; Ornella Rimoldi; Claudia Bearzi; Konrad Urbanek; Piero Anversa; Annarosa Leri; Jan Kajstura
The recognition that the adult heart continuously renews its myocyte compartment raises the possibility that the age and lifespan of myocytes does not coincide with the age and lifespan of the organ and organism. If this were the case, myocyte turnover would result at any age in a myocardium composed by a heterogeneous population of parenchymal cells which are structurally integrated but may contribute differently to myocardial performance. To test this hypothesis, left ventricular myocytes were isolated from mice at 3 months of age and the contractile, electrical, and calcium cycling characteristics of these cells were determined together with the expression of the senescence-associated protein p16INK4a and telomere length. The heart was characterized by the coexistence of young, aged, and senescent myocytes. Old nonreplicating, p16INK4a-positive, hypertrophied myocytes with severe telomeric shortening were present together with young, dividing, p16INK4a-negative, small myocytes with long telomeres. A class of myocytes with intermediate properties was also found. Physiologically, evidence was obtained in favor of the critical role that action potential (AP) duration and ICaL play in potentiating Ca2+ cycling and the mechanical behavior of young myocytes or in decreasing Ca2+ transients and the performance of senescent hypertrophied cells. The characteristics of the AP appeared to be modulated by the transient outward K+ current Ito which was influenced by the different expression of the K+ channels subunits. Collectively, these observations at the physiological and structural cellular level document that by necessity the heart has to constantly repopulate its myocyte compartment to replace senescent poorly contracting myocytes with younger more efficient cells. Thus, cardiac homeostasis and myocyte turnover regulate cardiac function.