Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monia Savi is active.

Publication


Featured researches published by Monia Savi.


Cardiovascular Research | 2010

The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice

Claudia Colussi; Roberta Berni; Jessica Rosati; Stefania Straino; Serena Vitale; Francesco Spallotta; Silvana Baruffi; Leonardo Bocchi; Francesca Delucchi; Stefano Rossi; Monia Savi; Dante Rotili; Federico Quaini; Emilio Macchi; Donatella Stilli; Ezio Musso; Antonello Mai; Carlo Gaetano; Maurizio C. Capogrossi

AIMS The effect of histone deacetylase inhibitors on dystrophic heart function is not established. To investigate this aspect, dystrophic mdx mice and wild-type (WT) animals were treated 90 days either with suberoylanilide hydroxamic acid (SAHA, 5 mg/kg/day) or with an equivalent amount of vehicle. METHODS AND RESULTS The following parameters were evaluated: (i) number of ventricular arrhythmias in resting and stress conditions (restraint test) or after aconitine administration; (ii) cardiac excitability, conduction velocity, and refractoriness; (iii) expression and distribution of connexins (Cxs) and Na(v)1.5 sodium channel. Ventricular arrhythmias were negligible in all resting animals. During restraint, however, an increase in the number of arrhythmias was detected in vehicle-treated mdx mice (mdx-V) when compared with SAHA-treated mdx (mdx-SAHA) mice or normal control (WT-V). Interestingly, aconitine, a sodium channel pharmacologic opener, induced ventricular arrhythmias in 83% of WT-V mice, 11% of mdx-V, and in 57% of mdx-SAHA. Epicardial multiple lead recording revealed a prolongation of the QRS complex in mdx-V mice in comparison to WT-V and WT-SAHA mice, paralleled by a significant reduction in impulse propagation velocity. These alterations were efficiently counteracted by SAHA. Molecular analyses revealed that in mdx mice, SAHA determined Cx remodelling of Cx40, Cx37 and Cx32, whereas expression levels of Cx43 and Cx45 were unaltered. Remarkably, Cx43 lateralization observed in mdx control animals was reversed by SAHA treatment which also re-induced Na(v)1.5 expression. CONCLUSION SAHA attenuates arrhythmias in mdx mice by a mechanism in which Cx remodelling and sodium channel re-expression could play an important role.


Current Pharmaceutical Design | 2011

Resident Cardiac Stem Cells

C Frati; Monia Savi; Gallia Graiani; Costanza Lagrasta; Stefano Cavalli; Lucia Prezioso; Pietro Rossetti; C Mangiaracina; Francesca Ferraro; Denise Madeddu; Ezio Musso; Donatella Stilli; Alessandra Rossini; Angela Falco; A De Angelis; Fernando Rossi; Konrad Urbanek; Annarosa Leri; Jan Kajstura; Piero Anversa; Eugenio Quaini; Federico Quaini

The introduction of stem cells in cardiology provides new tools in understanding the regenerative processes of the normal and pathologic heart and opens new options for the treatment of cardiovascular diseases. The feasibility of adult bone marrow autologous and allogenic cell therapy of ischemic cardiomyopathies has been demonstrated in humans. However, many unresolved questions remain to link experimental with clinical observations. The demonstration that the heart is a self-renewing organ and that its cell turnover is regulated by myocardial progenitor cells offers novel pathogenetic mechanisms underlying cardiac diseases and raises the possibility to regenerate the damaged heart. Indeed, cardiac stem progenitor cells (CSPCs) have recently been isolated from the human heart by several laboratories although differences in methodology and phenotypic profile have been described. The present review points to the potential role of CSPCs in the onset and development of congestive heart failure and its reversal by regenerative approaches aimed at the preservation and expansion of the resident pool of progenitors.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Modulation of actin isoform expression before the transition from experimental compensated pressure-overload cardiac hypertrophy to decompensation

Roberta Berni; Monia Savi; Leonardo Bocchi; Francesca Delucchi; Ezio Musso; Christine Chaponnier; Giulio Gabbiani; Sophie Clément; Donatella Stilli

In a rat model of long-lasting pressure-overload hypertrophy, we investigated whether changes in the relative expression of myocardial actin isoforms are among the early signs of ventricular mechanical dysfunction before the transition toward decompensation. Forty-four rats with infrarenal aortic banding (AC rats) were studied. Hemodynamic parameters were measured 1 mo (AC(1) group; n = 20) or 2 mo (AC(2); n = 24) after aortic ligature. Then subgroups of AC(1) and AC(2) left ventricles (LV) were used to evaluate 1) LV anatomy and fibrosis (morphometry), 2) expression levels (immunoblotting) and spatial distribution (immunohistochemistry) of alpha-skeletal actin (alpha-SKA), alpha-cardiac actin (alpha-CA), and alpha-smooth muscle actin (alpha-SMA), and 3) cell mechanics and calcium transients in enzimatically isolated myocytes. Although the two AC groups exhibited a comparable degree of hypertrophy (+30% in LV mass; +20% in myocyte surface) and a similar increase in the amount of fibrosis compared with control animals (C group; n = 22), a worsening of LV mechanical performance was observed only in AC(2) rats at both organ and cellular levels. Conversely, AC(1) rats exhibited enhanced LV contractility and preserved cellular contractile behavior associated with increased calcium transients. Alpha-SKA expression was upregulated (+60%) in AC(1). In AC(2) ventricles, prolonged hypertension also induced a significant increase in alpha-SMA expression, mainly at the level of arterial vessels. No significant differences among groups were observed in alpha-CA expression. Our findings suggest that alpha-SKA expression regulation and wall remodeling of coronary arterioles participate in the development of impaired kinetics of contraction and relaxation in prolonged hypertension before the occurrence of marked histopathologic changes.


Basic Research in Cardiology | 2007

Preservation of ventricular performance at early stages of diabetic cardiomyopathy involves changes in myocyte size, number and intercellular coupling

Donatella Stilli; Costanza Lagrasta; Roberta Berni; Leonardo Bocchi; Monia Savi; Francesca Delucchi; Gallia Graiani; Manuela Monica; Roberta Maestri; Silvana Baruffi; Stefano Rossi; Emilio Macchi; Ezio Musso; Federico Quaini

In a rat model of diabetic cardiomyopathy, we tested whether specific changes in myocyte turnover and intercellular coupling contribute to preserving ventricular performance after a short period of hyperglycemia. In 41 rats with streptozotocin-induced diabetes and 24 control animals, cardiac electromechanical properties were assessed by telemetry ECG, epicardial potential mapping, and hemodynamic measurements to document normal ventricular function. Myocardial remodeling, expression of gap-junction proteins and myocyte regeneration were evaluated by tissue morphometry, immunohistochemistry and immunoblotting. Ventricular myocyte number and volume were also determined. In diabetic hearts, after 3 weeks of hyperglycemia, left ventricular mass was lowered by 23%, while left ventricular wall thickness and chamber volume were maintained, in the absence of fibrosis and myocyte hypertrophy. In the presence of a marked DNA oxidative damage, an increased rate of DNA replication and mitotic divisions associated with generation of new myocytes were detected. The number of cells expressing the receptor for Stem Cell Factor (c-kit) and their rate of proliferation were preserved in the left ventricle while the atrial storage of these primitive cells was severely reduced by diabetes-induced oxidative stress. Despite a down-regulation of Connexin43 and over-expression of both Connexin40 and Connexin45, the junctional proteins were normally distributed in diabetic ventricular myocardium,justifying the preserved tissue excitability and conduction velocity. In conclusion, before the appearance of the diabetic cardiomyopathic phenotype,myocardial cell proliferation associated with gap junction protein remodeling may contribute to prevent marked alterations of cardiac structure and electrophysiological properties, preserving ventricular performance.


PLOS ONE | 2011

Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction.

Leonardo Bocchi; Monia Savi; Gallia Graiani; Stefano Rossi; Aldo Agnetti; Francesca Stillitano; Costanza Lagrasta; Silvana Baruffi; Roberta Berni; Caterina Frati; Mario Vassalle; Umberto Squarcia; Elisabetta Cerbai; Emilio Macchi; Donatella Stilli; Federico Quaini; Ezio Musso

Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs) appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI), lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60) or vehicle (V, n = 55), or sham operated (n = 18). In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP) without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration of mechanical function. In conclusion, local injection of GFs ameliorates electromechanical competence in chronic MI. Reduced arrhythmogenesis is attributable to prolongation of ERP resulting from improved intercellular coupling via increased expression of connexin43, and attenuation of unfavorable remodeling.


Journal of Biomedical Materials Research Part A | 2015

Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats.

Monia Savi; Leonardo Bocchi; Emanuela Fiumana; Jean-Pierre Karam; Caterina Frati; Francesca Bonafè; Stefano Cavalli; Paolo Giovanni Morselli; Carlo Guarnieri; Claudio M. Caldarera; Claudio Muscari; Claudia N. Montero-Menei; Donatella Stilli; Federico Quaini; Ezio Musso

One of the main cause of ineffective cell therapy in repairing the damaged heart is the poor yield of grafted cells. To overcome this drawback, rats with 4-week-old myocardial infarction (MI) were injected in the border zone with human adipose-derived stem cells (ADSCs) conveyed by poly(lactic-co-glycolic acid) microcarriers (PAMs) releasing hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) (GFsPAMs). According to treatments, animals were subdivided into different groups: MI_ADSC, MI_ADSC/PAM, MI_GFsPAM, MI_ADSC/GFsPAM, and untreated MI_V. Two weeks after injection, a 31% increase in ADSC engraftment was observed in MI_ADSC/PAM compared with MI_ADSC (p < 0.05). A further ADSC retention was obtained in MI_ADSC/GFsPAM with respect to MI_ADSC (106%, p < 0.05) and MI_ADSC/PAM (57%, p < 0.05). A 130% higher density of blood vessels of medium size was present in MI_ADSC/GFsPAM compared with MI_ADSC (p < 0.01). MI_ADSC/GFsPAM also improved, albeit slightly, left ventricular remodeling and hemodynamics with respect to the other groups. Notably, ADSCs and/or PAMs, with or without HGF/IGF-1, trended to induce arrhythmias in electrically driven, Langendorff-perfused, hearts of all groups. Thus, PAMs releasing HGF/IGF-1 markedly increase ADSC engraftment 2 weeks after injection and stimulate healing in chronically infarcted myocardium, but attention should be paid to potentially negative electrophysiological consequences.


Journal of Tissue Engineering and Regenerative Medicine | 2011

High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts

Alessandra Giuliani; Caterina Frati; Alessandra Rossini; V. S. Komlev; Costanza Lagrasta; Monia Savi; Stefano Cavalli; Carlo Gaetano; Federico Quaini; Adrian Manescu; Franco Rustichelli

The recent introduction of stem cells in cardiology provides new tools in understanding the regenerative processes of the normal and pathological heart and has opened a search for new therapeutic strategies. Recent published reports have contributed to identifying possible cellular therapy approaches to generate new myocardium, involving transcoronary and intramyocardial injection of progenitor cells. However, one of the limiting factors in the overall interpretation of clinical results obtained by cell therapy is represented by the lack of three‐dimensional (3D) high‐resolution methods for the visualization of the injected cells and their fate within the myocardium. This work shows that X‐ray computed microtomography may offer the unique possibility of detecting, with high definition and resolution and in ex vivo conditions, the 3D spatial distribution of rat cardiac progenitor cells, labelled with iron oxide nanoparticles, inside the infarcted rat heart early after injection. The obtained 3D images represent a very innovative progress as compared to experimental two‐dimensional (2D) histological analysis, which requires time‐consuming energies for image reconstruction in order to provide the overall distribution of rat clonogenic cells within the heart. Through microtomography, we were able to observe in 3D the presence of these cells within damaged cardiac tissue, with important structural details that are difficult to visualize by conventional bidimensional imaging techniques. This new 3D‐imaging approach appears to be an important way to investigate the cellular events involved in cardiac regeneration and represents a promising tool for future clinical applications. Copyright


Cardiovascular and Hematological Agents in Medicinal Chemistry | 2010

Cancer treatment-induced cardiotoxicity: a cardiac stem cell disease?

Lucia Prezioso; S. Tanzi; Federica Galaverna; Caterina Frati; B. Testa; Monia Savi; Gallia Graiani; Costanza Lagrasta; Stefano Cavalli; Serena Galati; Denise Madeddu; E. Lodi Rizzini; Francesca Ferraro; Ezio Musso; Donatella Stilli; Konrad Urbanek; Elena Piegari; A. De Angelis; A. Maseri; Fernando Rossi; Eugenio Quaini; Federico Quaini

Cardiovascular diseases and cancer represent respectively the first and second cause of death in industrialized countries. These two conditions may become synergistic when cardiovascular complications of anti-cancer therapy are considered. More than 70% of childhood and 50% of adult cancer patients can be cured, however this important success obtained by the biological and medical research is obfuscated by emerging findings of early and late morbidity due to cardiovascular events. Although anthracyclines are effective drugs against cancer a dose-dependent cardiotoxic effects whose mechanism has not been elucidated resulting in failure of therapeutic interventions limit their use. Unexpectedly, tyrosine/kinase inhibitors (TKIs) aimed at molecularly interfering with oncogenic pathways, have been implicated in cardiac side effects. Possible explanations of this phenomenon have been ambiguous, further strengthening the need to deepen our understanding on the mechanism of cardiotoxicity. In addition to a detailed description of anthracyclines and TKIs-related cardiovascular effects, the present review highlights recent observations supporting the hypothesis that the cellular target of anthracyclines and TKIs may include myocardial compartments other than parenchymal cells. The demonstration that the adult mammalian heart possesses a cell turnover regulated by primitive cells suggests that this cell population may be implicated in the onset and development of cardiovascular effects of anti-cancer strategies. The possibility of preventing cardiotoxicity by preservation and/or expansion of the resident stem cell pool responsible for cardiac repair may open new therapeutic options to unravel an unsolved clinical issue.


Nutrients | 2016

Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol

Monia Savi; Leonardo Bocchi; Roberto Sala; Caterina Frati; Costanza Lagrasta; Denise Madeddu; Angela Falco; Letizia Bresciani; Michele Miragoli; Massimiliano Zaniboni; Federico Quaini; Daniele Del Rio; Donatella Stilli

Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart

Monia Savi; Leonardo Bocchi; Stefano Rossi; Caterina Frati; Gallia Graiani; Costanza Lagrasta; Michele Miragoli; Elisa Di Pasquale; Giuliano Giuseppe Stirparo; Giuseppina Mastrototaro; Konrad Urbanek; Antonella De Angelis; Emilio Macchi; Donatella Stilli; Federico Quaini; Ezio Musso

c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart.

Collaboration


Dive into the Monia Savi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge